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5.112 Principles of Chemical Science, Fall 2005 
Transcript – Lecture 34 

Welcome, everybody, on this snowy Friday. 

At the end of last hours, and I just want to take a minute or two here 
to finish this piece up, we were talking about ways of writing kinetics 
expressions for a particular type of assumed ligand substitution 
mechanism. 

In particular, we were looking at dissociative substitution. 

And now I would just like to take you through what happens if you 
don't make the major assumption that we made last time, which was 
that every time our intermediate five coordinate complex ML5 was 
formed it would go onto products. 

That was our assumption last time, one of them. And this steady state 
approximation is one that allows us to simplify the rate expression. If 
we don't make that assumption, what we say is that the change with 
time of the concentration of the intermediate is approximately zero. 

We know that at the very beginning of the reaction we have this ML5X 
species. 

X is the ligand that dissociates to give ML5, so at time zero there is 
zero ML5 concentration. And let me just remind you of this plot of 
what happens in a reaction like this. 

We have our initial ML5X species that decays away and we have our 
product ML5Y that grows in. 

And if this reaction goes by dissociative ligand substitution, which 
would certainly be consistent with a D4 high spin electron count, as we 
saw last time, then there may be some intermediate ML5 that at time 
zero has zero concentration. 

And it may never really build up very much concentration. And then at 
the end it goes down to zero, too, because when the reaction is over 
all of our ML5 has a Y attached and is a six coordinate again. 
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If the concentration of the ML5 intermediate never really builds up 
very much, which is quite often the case, it may not be observable, 
the amount of which is produced during the reaction then this 
approximation is pretty valid and allows us to derive equations for the 
change with time of the species that we can observe, namely the 
starting material that is going away and the product that is coming in. 

And so this is our concentration versus time plot for the reaction. 

And with this approximation we can then set equal to zero the 
expression for the formation of the intermediate, which is k1 times 
ML5X. 

This quantity k1, if you remember back to the diagram we were using 
last time, k1 is the rate constant associated with surmounting that first 
energy barrier, k1 times ML5X. 

That produces ML5, so this is producing it, but when you are in the 
middle of the well where the intermediate lies there are two ways to 
destroy ML5. You can go k minus one ML5 times X. 

This brings you then back over to where you started. 

And you can also lose it in a productive sense by k2 times ML5 times 
our species Y, which brings us onto products. And we are still making 
the assumption that once you get to products the reaction is done and 
you never go back. 

That assumption is built into this analysis. 

And if we look at this, we have set it equal to zero meaning that ML5 is 
not building up. And so now what we can do is we can rearrange this 
expression and solve it for the concentration of ML5. 

And you will see that you can do that here. ML5 becomes equal to k1 
times ML5X. 

That is the expression for the formation. These two brackets should be 
done. ML5X times k minus one times Y plus. 

Sorry. 



That should be X here. Plus k2 times Y. The expression in the 
denominator here are those two quantities that take us out of the well. 
And on the top we have the one quantity that takes us into the well 
from the starting materials. 

And so now we have an expression for ML5 that we can plug into our 
expression for the rate. 

The rate overall expressed as the appearance of the final product is 
going to be equal to k2 times ML5, this is going over the final barrier, 
times Y. 

And so if we take the expression here for the rate, this is the value 
that we expect for the appearance of products. 

We take that substitute in this expression for the unobserved 
intermediate ML5 into this. 

Then we have an expression for the rate entirely in terms of things 
that we can either observe, namely the starting material, the 
concentration we would measure by some technique like 
spectrophotometry as a function of time, watching an absorbance band 
for it decay away, for example. 

And then also in terms of the concentration of Y which we were talking 
about as the solvent, so it would have a large invariant and known 
concentration. 

And then, of course, since X is being produced in the reaction 
whenever it dissociates from the starting material there is a 
relationship between the concentration of X at any time and the 
concentration of our starting material at any time. 

Now we get an expression that we need to be able to integrate in 
order to actually produce, given these parameters, k1, k minus 1 and 
k2 to produce a predicted dataset to compare with the experimental. 

And what one normally does is you take an experimental dataset, you 
have the equations that arise from your mechanistic hypothesis and 
you do a least squares fitting procedure to obtain the values of the 
parameters, which are these phenomenological rate constants 
associated with each step in the mechanism. 



Extract the values of the parameters and see what you get, see if the 
mechanism that you have assumed can give you a good fit to the data 
or whether it cannot. 

That is the end of my discussion of an introduction to kinetic analysis 
of chemical reactions, a really important subject where differential 
equations really become very important. Today I want to get onto the 
top of extended solids, and so I am going to talk about dimensionality 
here. 

And materials. 

And I want you to keep in mind the framework with which we have 
been discussing chemical bonding all throughout this semester 
because we are going to extend that today to try to understand some 
of the properties of systems that are not molecular but extend infinity 
in some number of dimensions. 

We talked about the H2 molecule. 

This is a very small molecular system that we have described and 
talked about quite a bit. This system has a radius here of about 0.64 
angstroms, or internuclear distance of about 0.64 angstroms. And then 
we can also consider molecules that become more extended. 

There is an example of a polyene. 

And my use of a polyene here should lead you to think that when we 
consider polymer chemistry, in some cases we will be talking about 
systems that are extended, maybe not infinitely but very greatly in 
one direction, or maybe more than one direction. 

But polyenes are interesting species because if this thing had all the 
double bonds, trans as I have drawn here, then what we have 
perpendicular to the board would be a set of p-orbitals, one p-orbital 
perpendicular to the board on each of these carbons. 

And all of those p-orbitals can overlap. And then we can start talking 
about the transport of electrons down a chain like this in one 
dimension. 

So I put H2 up here as an example of what is approximately a zero-
dimensional system. 



Here is a system that extends somewhat in one dimension. And then 
as an example of a two-dimensional system, let me just draw up here 
a piece of one of the sheets of the graphite structure. 

Graphite is one of the allotropes of carbon. 

And graphite is a really nice 2d structure. I can draw in some of the 
unsaturation here. And I don't mean to suggest that this thing stops 
here. These carbons on the parameter of the graphite system have 
bonds, and the structure looks very much like what I have drawn here 
if you repeat outward, up, down, left or right. 

And what that leads to are two-dimensional planar arrays of carbon 
atoms that, as with the polyene structure, here this polyene that I 
drew with six bonds is about 13 angstroms long. 

And then the problem that you get to with graphite is that these 
graphite sheets can have dimensions of millimeters. 

You have gone from something short to something very, very large. 
And we are going infinitely. 

I am going to show you a little bit more about this. I am going to let 
you look at this website yourselves. You are going to find that I did put 
into the notes for today the website that we are going to look at. 

And it is for you to go ahead and look at in three-dimensions at the 
structure of the graphite. 

And also, in particular, I want you to be able to look at the structure of 
the diamond framework. One of the things that I want you to be 
thinking about in association with today's lecture are the way that 
atoms pack in three dimensions when you make up a solid material. 

You will see why that is important in just a moment. 

And so we are going to have to go from bonds to bands in order to 
make this transition. 

And that means we are going to have to talk about band structure 
today and where bands come from. 

This, by the way, the title for this panel from bonds to bands is 
actually the inverse of a title that was penned for a beautiful article 



written by Professor Roald Hoffmann. And he was actually one of my 
teachers as an undergraduate at Cornell University, and he also won 
the Nobel Prize for his contributions to theory. 

And I refer you to his article from bands to bonds if you want to learn 
more about this topic because, although the concepts of solid state 
physics are often discussed with very different terminology than the 
concepts of electronic structure theory for molecules there are a lot of 
very important parallelisms. 

And one of the things that Professor Hoffmann is very good at is in 
bridging the gap between different branches of science that talk about 
the same things but don't realize that they are talking about the same 
things. 

And so here we have a system with a single orbital. 

We are going to look at the number of orbitals. And here is a system 
with one. And this is an energy level diagram. We have used energy 
level diagrams for a lot of things. Last lecture we used them to discuss 
potential energy surfaces of chemical reactions, in addition to all these 
other properties. 

Here is a system with one orbital. 

And then, as you know, when you have a system with two orbitals you 
can get bonding and antibonding. This is the hydrogen problem. This 
might be a hydrogen atom, for example. Here is an H2 molecular 
orbital diagram. 

And then we can consider a system that might have three orbitals 
populated like this. 

And then, if we have a system with four orbitals, it might be 
something like that, four electrons and so on. We see that one of the 
features is that the energy levels are starting to come closer together 
as we get more and more of them. 

There are five. Here is six. 

And then onto seven. And you start running out of room to draw them. 
And so what people do then with this problem, we are only up to 
seven and we have almost run out of space to draw these things. 



So what do we do? We draw them, when we get out to infinity here, as 
a band. 

What the idea is, is that we have here this band diagram, as we are 
going to call them, a type of diagram in which we are representing 
field orbitals down here as some kind of continuum. 

Because there are so many of them, an infinite number of orbitals that 
are all interacting in some extended solid material, we are going to be 
talking today a little bit about silicon and germanium and things like 
gallium nitride in which you have a lattice that extends periodically in 
three-dimensions. 

And so these molecular orbitals spread out and cover the whole 
material. 

Electrons can be anywhere at once within this entire extended solid by 
virtue of these delocalized orbitals. And then, just like in molecules, 
there are empty orbitals. 

And they occur also in a continuum. 

I would like you to get your mind around going from both ends to the 
same place in that type of continuum. And the idea that these band 
structure diagrams that people use to describe the electronic structure 
properties of extended materials are really molecular orbital diagrams. 

And so let's take a typical metal where N equals principle quantum 
number three. 

The atom has a 1s orbital. It has a 2s and a set of 2p orbitals. It has a 
3s orbital and a set of 3p. 

And so there is an atom, like a sodium atom, for example. And here is 
our energy axis. What happens is that each of these orbitals that when 
you put all these atoms together into a piece of solid sodium metal, we 
talked about that earlier in the semester, these orbitals overlap, 
spread out and form bands. 

And there is a band very low in energy that is derived from the 1s 
electrons in a metal-like sodium. 

And it is completely full. And then there is a band from the 2s and 
there is a band, accordingly, from the 2p. 



And then there will be a band from the 3s and a band from the 3p that 
I have run out of room to draw there. And notice that the bands that 
originate from atomic orbitals having the same principle quantum 
number here, 2s and 2p, are overlapping. 

In the case of a sodium atom, this 2s band is completely full with 
electrons and the 2p band is completely full. 

And this 3s band here, in the case of sodium, is half full. Furthermore, 
we are going to call these filled bands that are at the highest energy. 
This corresponds to our highest occupied molecular orbital. 

That will be called the valance band. 

And then up here the lowest unoccupied band is called the conduction 
band. 

And so, in the case of sodium metal, this 3s band is half full. 

And, if we go over to magnesium, this same 3s band is now full. 

And if we go to aluminum that 3s band is full and the 3p band is partly 
full. 

And it is a consequence of the fact that the electrons in the valance 
band are right here at the same energy as the lowest part of the 
conduction band in a metal that gives metals their luster. 

It gives them their 100% optical reflectivity. 

These properties that we very much associate with metals. And so 
from analyzing band structure diagrams, even simplified ones like the 
ones you will find here and in your textbook today, you can really say 
a lot about the properties of different materials. 

When you have a meeting of the valance band and the conduction 
band then your material is a conductor and is metallic. 

And then there are other possibilities, of course. You may have a 
valance band that is separated by some energy gap from the 
conduction band. 



And if that is that is the case then you have a semi-conductor such as 
silicon. 

And then, finally, you can have a large gap between your valance band 
and your conduction band. 

And, in all cases, like with an MO diagram, we are putting these things 
on an energy axis. We are filling up electrons from the bottom in this 
material from the standpoint of energy, and so you have a large gap 
here. 

And you have a material that is an insulator. 

And I think you will appreciate why that is in a moment, but I want to 
bring Boltzmann's law to bear on the issue of electronic structure in 
extended networks like we are talking about today. 

In materials like the ones I have drawn over here, the ability to 
conduct electricity is related to the probability of electrons being in the 
conduction band. 

So we need to know something about electrons in the conduction 
band. 

And, using a Boltzmann distribution, we can write that probability as 
being related to one over E to the delta E over RT plus one. 

And, with an expression like this, this delta E here corresponds to our 
gap. 

And so it is possible then to go ahead and estimate the number of 
electrons that would be present in a cubic centimeter of your material 
in the condition band as a function of this energy gap. 

And so we can consider that for materials like carbon or silicon or 
elemental germanium. 

In the case of carbon, I am talking about diamond. And you should 
definitely go to that specified website and look at the diamond 
structure and try to get an appreciation for how the carbon atoms in 
diamond pack in three dimensions. 

From a hybridization standpoint, all the carbons in graphite are sp2. 



Whereas, in diamond all the carbons are sp3 and tetrahedral. And 
completing this table --

-- we can write down delta E in kilojoules per mole. 

The gap for diamond is 524 kilojoules per mole, for silicon 117 
kilojoules per mole and for germanium 66 kilojoules per mole. 

And here is the number of electrons per centimeter cubed in the 
material in the conduction band. 

And, based on this large energy gap in the diamond structure, this 
value is on the order of 10 to the minus 27th. 

Very small. This is an insulator. Diamond is an insulator. 

And, on the other hand, silicon, the number of electrons per cubic 
centimeter that are in the conduction band are on the order of 10 to 
the 9th. 

This much smaller gap in the case of silicon, despite the fact that the 
silicon atoms also are tetrahedrally disposed with respect to their 
bonding, just as in the diamond case, we have a much smaller gap, 10 
to the 9th. 

And that makes silicon, as you know, a semiconductor. 

And then germanium 10 to the 13th, so even more. It is getting closer 
and closer to being metallic as the gap shrinks as we compare these 
materials. 

And, having said that, we need to talk about the different types of 
materials that we can have. 

I want you to understand the difference between intrinsic and extrinsic 
semiconductors. 

If a semiconductor material is an intrinsic semiconductor that means it 
is a semiconductor in its pure state. 

And why would we make that reference? I mean normally we are 
always talking about pure things. 



But, actually, you will see in a moment that people do purposely make 
impure semiconductors for very good reasons. 

And we will discuss semiconductor when pure. And what that means is 
you have a system like this with some kind of a small band gap, as we 
have suggested. 

Here is our energy axis. And what can happen is that either thermally 
or upon absorption of light energy, we can have promotion of an 
electron from the valance band into the conduction band. 

And so I will draw that new situation over here. 

In other words, we may have thermal population of our conduction 
band. And we general, accordingly, a hole. 

In this intrinsic semiconductor, for every electron that jumps up into 
the conduction band and can then provide conductivity by electron 
transport. 

Down here, in the valance band, the missing electron generates a 
hole. 

And that hole can move around freely in the valance band. How does it 
do that? Well, it is a little bit like the mechanism that we studied 
earlier for translocation of protons in acidic water. If an electron that is 
nearby the hole jumps into the hole, it creates another hole. 

The hole thereby moves. And so here we can have hole transport in 
our valance band. 

You can have conductivity occurring freely, both in the valance band 
and in the conduction band for an intrinsic semiconductor of this type 
where the number of holes is equal to the numbers of electrons. 

And you might begin to suspect that for an extrinsic semiconductor the 
number of holes does not equal the number of electrons. 

How does that work? In these extrinsic semiconductors wherein you 
have differing numbers of holes in electrons, you are purposely adding 
a small percentage of impurities to your material. 

Let me draw two pictures to represent this. 



Here I would like to draw just a simple tetrahedron. We are looking at 
a very small part of the silicon structure. 

Let me put the silicons in here in color. Each silicon is coordinated to 
four other silicons in elemental silicon. 

It is tetrahedral silicon all through this three-dimensional material in 
which these bands have been created and in which we have valance 
and conduction bands. But what if we have synthesized our silicon with 
a little bit of boron impurity? 

If we do that then boron goes into a position in the crystal lattice that 
is normally occupied by silicon, so boron finds itself surrounded by four 
silicons, each of which wishes to donate an electron to the boron to 
form an electron pair bond. 

But boron only has three of the needed for electrons to make those 
four 2-electron bonds and to generate the octet. 

And so what happens is it wants to get an electron. And where can it 
get an electron from? It can get an electron from the valance band, 
from the HOMO of the system, from what would be able to donate an 
electron in the system. 

The way this then works is as follows. 

You should think about the structure of elemental silicon with a small 
number of boron atoms dispersed throughout that structure as 
creating localized negative charges that cannot move because they are 
localized on these borons. 

And that generates for you a band structure diagram like this. You 
have bands, but then you have slipped in there a little orbital from the 
boron, a little electronic state here, an intermediate between the 
valance band and the conduction band. 

So you have to choose your impurity correctly so that it has the right 
energy with respect to the valance band and the conduction band in 
order for the process that you want to occur. 

Here is our boron-derived state here, and it needs that extra electron 
because it is electron deficient when you put it in there. And so an 
electron jumps onto the boron, we will represent that this way, in the 
material like that. 



And this electron is fixed in position --

-- because it is associated with a negative charge that has formed on 
the boron. And a corresponding hole is formed down in the conduction 
band, and this hole transport can give rise to conductivity. 

And so notice that in this type of semiconductor, and this, by the way, 
is a P-type semiconductor. 

P for positive. You are putting in a hole on that boron, so this is a P-
type of semiconductor. 

This thing is stuck on the boron, and it generates a hole that is free to 
move in the valance band and giving rise to conductivity. 

And so in this extrinsic-type of semiconductor, you are not necessarily 
getting any conductivity up here in the normal conduction band but 
down in the valance band due to the creation of the hole. And then the 
parallel situation to that would be where you have something that you 
dope into the structure that has one more electron than what is 
normally in the structure. 

Normally you are putting in silicon atoms each of which has four 
valance electrons. 

You put in a phosphorus atom, which isn't nearly the same size as 
silicon but has five valance electrons. So you have this phosphorus in 
here, and it is tetrahedrally coordinated to four silicons. And there is 
only a few percentage of phosphorous atoms doped into this silicon 
semiconductor. 

And the phosphorus, what happens is it goes in there. 

It has an extra electron. It wants to give it up so that it can have just 
an octet and form these four bonds to the four silicons. And when it 
gives up that electron, the electron goes out and that forms a positive 
charge that is localized and fixed on the phosphorous center in the 
structure. 

And so we can represent that as follows. 

Where we have a phosphorus state that we had chosen appropriately 
in energy to go ahead and give up that electron. It gives up the 



electron to the lowest unoccupied orbitals in the system, which is the 
bottom part of your conduction band. 

This electron jumps up off the phosphorus and into the conduction 
band. And that leaves behind a hole. 

So you have a hole or a positive charge there fixed in position. And 
now you can have electron transport as your mechanism of 
conductivity up in the conduction band. 

It is really, I think, quite fascinating to think about the way in which 
the concept of the octet rule and our understanding of bonding in 
tetrahedral centers can actually lead us to understand the mechanism 
of conductivity in solid materials that are either n-doped or p-doped. 

Here it is quite clear. 

And then, finally, I just want to take you through the way in which you 
can put the positive and negative doped materials together to create a 
device like a light-emitting diode. 

LED materials, these are obviously great things because you can 
generate light with a lot more efficiency in terms of energy than you 
can with incandescent bulbs. 

You can get them in all different colors. These are finding application in 
so many different ways. 

One of the challenges that chemists have taken on is the discovery of 
light-emitting diode materials that are made of organic molecules, 
actually, conducting organic molecules that have properties correct for 
giving you very narrow emissions in the part of the spectrum that you 
want to have coming out of your light-emitting diode material. 

So chemistry is really very strongly involved in making next-
generation LED materials. 

But I just want to tell you a little bit about how these things work. The 
idea is that you have these two types of semiconductors and you just 
oppose them at an interface. 

Let me make the interface with blue. You have a solid chunk of 
material here. This will be our N-type semiconductor. 



And over here they have a continuous possible two-dimensional 
interface here in this three-dimensional chunk of material. 

And you have a P-type doped part of the system over here. And, in 
fact, normally this would be the same basic semiconductor material on 
both sides of the interface. And it would be just the doping that 
changes on the left versus the right. 

This material might be something like gallium nitride. 

Now, notice that this is a 3/5 type of material. And this is gallium in 
Group 13 and nitrogen in Group 15 of the Periodic Table. You add 
three and five together and you get eight, just the same number of 
valance electrons you would if you had silicon and silicon. 

But these materials have the property that they are a direct band gap 
material. 

And, as direct band gap materials, when the process that we are going 
to talk about here takes place at the interface then out of this interface 
comes the light. 

And if your semiconductor material is an indirect band gap material 
like silicone is then that is not the case. And that has to do with the 
solid state physics of electronically where is the conduction band 
located relative to that valance band? 

Has it shifted horizontally in solid physics-speak relative to the valance 
band? That's what makes a semiconductor an indirect band gap 
material. 

If the conduction band is vertically situation above the valance band 
then you get a direct band material. And so solid state chemists are 
interested in designing new materials that have a direct band gap and 
that can release light when this process takes place at the interface. 

And on both sides I just want to sketch the band structure for the 
materials. 

And I mean the gap, actually, to be the same on both sides here. And 
the difference is what we have doped it with. In the case of the 
negative material, we have an electron up here in the conduction band 
that came in with, for example, our phosphorus atom and left behind a 
hole there that is fixed in space. 



And down here we have our valance band all full. 

Over here similar, except our material starts out with a hole down 
there because the electron has jumped up onto the doped atom and 
become fixed in space as a negative charge. And that left behind a 
hole in the valance band down there like that. 

What you have is your n-doped material here on the left, your p-doped 
material on the right. 

And, of course, what do you do then? You attach leads so that you can 
connect it to a potential difference. And, when you do that, you want 
your anode to be over here so that the electrons can flow that way up 
to the n part of the device. 

And then electrons can flow this way, which means, of course, that 
holes go that way. 

And here is your cathode. And so you can think of putting on your 
potential difference in a system like this. And that has the effect of 
ripping electrons out over here. 

And, if you rip an electron out, let's say you take that negative charge 
back off of that boron atom, you pull an electron out to go ahead and 
reduce something down here in solution, if you are using a battery for 
this sort of process, well, then another electron can jump up here to 
take its place. 

But you are building up a potential here. And so what happens? The 
highest lying electron in the system over here in the N-type 
semiconductor is sitting there right at the junction right next to where 
electrons are needed. 

It jumps across. 

Electrons flow downhill here. And you can look at it like this, electrons 
flow down here across the interface. And when you hook this LED up 
to your potential difference supply, the electron flow is unidirectional. 

As the electrons jump across the interface, they are going from the 
conduction band of the N-type semiconductor, they are going down in 
here, holes are being created, maybe electrons are being pulled right 



off of that boron and they are moving right across here in a process 
that leads to the emission of light right at the interface. 

It is like a waterfall of electrons taking place all along this 2d interface. 

Electrons are just moving across this interface and dropping down in 
energy. As they drop down in energy, a photon that is the energy of 
this energy difference between the gap of this material, those photons 
are released for each electron that transits this barrier. 

And that is the principle of an LED. 

And I hope you are enjoying seeing this connection between molecular 
orbital theory for molecules being taken all the way to solid state 
physics. Have a nice weekend and we will see you on Monday. 


