I. Consider a random walk on a linear three-site model. p and q are the probabilities of moving right and left respectively. $\quad(p+q=1)$

1) Write the transition matrix Q.
2) Find the stationary distribution and show that it satisfies detailed balance.
3) For the special case of $p=q=\frac{1}{2}$, compute the probability at $n=3$ after s steps, $p_{n}(s)$, given $p_{n}(0)=\delta_{n 1}$.
4) *Repeat the calculation in 3) for $p \neq q$.
II. A one-dimensional random walk on an infinite lattice is described by a master equation

$$
\frac{d p_{n}}{d t}=a\left(p_{n-1}-p_{n}\right)+b\left(p_{n+1}-p_{n}\right)
$$

where a and b are the forward and backward rate constants.

1) Calculate:

$$
\begin{aligned}
& \langle n(t)\rangle=\sum_{n} n p_{n}(t), \\
& \left\langle n^{2}(t)\right\rangle=\sum_{n} n^{2} p_{n}(t),
\end{aligned}
$$

and

$$
\left\langle\delta n^{2}\right\rangle=\left\langle n^{2}(t)\right\rangle-\langle n(t)\rangle^{2} .
$$

2) $*$ Given that the random walker starts at $n=0$, i.e. $p_{n}(0)=\delta_{n 0}$, find $p_{n}(t)$.
III. For the three-site model the forward rate is a and the backward rate is b. The walker is initially at site A_{1}.

3) Calculate the probability that the walker has not arrived at A_{3} by time t.
4) Calculate the mean first passage time from A_{1} to A_{3}.
IV. *Consider a random walk on an infinite d-dimensional lattice with transition rate to the next neighbor being α. The random walker starts at $n=0$, i.e. $p_{n}(0)=\delta_{n 0}$.
5) Derive a formal expression for $p_{n}(t)$.
6) Show the long-time behavior is diffusive with diffusion constant α and $\lim _{t \rightarrow \infty} p_{0}(t) \propto t^{-\frac{d}{2}}$
7) $f_{0}(t)$ is the probability that the walker arrives at site 0 for the first time. Show that

$$
\lim _{s \rightarrow 0} \hat{f}_{0}(s)=1-\frac{1}{\alpha \hat{p}_{0}(s)}
$$

where \hat{f}_{0} and \hat{p}_{0} are the Laplace transforms of f_{0} and p_{0}.
4) Define the total return probability as $R=\int_{0}^{\infty} f_{0}(t) d t$.

Show that $\quad R=1$ for $d=1$ or 2 and $\quad R<1$ for $d>2$.
(Note: references Reichl and Montroll.)

* honorary problems will not be counted towards grade.

MIT OpenCourseWare
http://ocw.mit.edu

5.72 Statistical Mechanics

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

