5.74, Problem Set \#1

Spring 2004
Due Date: February 18, 2003

1. Let the eigenfunctions and eigenvalues of an operator \hat{A} be φ_{n} and a_{n} respectively: $\hat{A} \varphi_{n}=a_{n} \varphi_{n}$. If $f(x)$ is a function that we can expand in powers of x , show that φ_{n} is an eigenfunction of $f(\hat{A})$ with eigenvalue $f\left(a_{n}\right)$:

$$
f(\hat{A}) \varphi_{n}=f\left(a_{n}\right) \varphi_{n}
$$

2. For a two-level system with an Hamiltonian $H=\left(\begin{array}{cc}\varepsilon_{a} & V_{a b} \\ V_{b a} & \varepsilon_{b}\end{array}\right)$
a) Show that the eigenvalues are $\varepsilon_{ \pm}=\mathrm{E} \pm \sqrt{\Delta^{2}+\left|\mathrm{V}_{\mathrm{ab}}\right|^{2}}$

$$
\text { where } \Delta=\frac{\varepsilon_{\mathrm{a}}-\varepsilon_{\mathrm{b}}}{2} \text { and } \mathrm{E}=\frac{\varepsilon_{\mathrm{a}}+\varepsilon_{\mathrm{b}}}{2} \text {. }
$$

b) If we define a transformation $\tan 2 \theta=\frac{\left|V_{a b}\right|}{\Delta}$, find the form of the eigenvectors of the coupled states $\left|\varphi_{+}\right\rangle,\left|\varphi_{-}\right\rangle$. What is the similarity transformation that takes you from the $\left\{\left|\varphi_{+}\right\rangle,\left|\varphi_{-}\right\rangle\right\}$to the $\left\{\left|\varphi_{\mathrm{a}}\right\rangle,\left|\varphi_{\mathrm{b}}\right\rangle\right\}$ basis? Is this operator unitary?
c) Verify that this basis is normalized and orthogonal.
3. Convince yourself that

$$
\begin{aligned}
\exp (i G \lambda) A \exp (-i G \lambda) & =A+i \lambda[G, A]+\left(\frac{i^{2} \lambda^{2}}{2!}\right)[G,[G, A]]+\ldots \\
& +\left(\frac{i^{n} \lambda^{n}}{n!}\right)[G,[G,[G \ldots[G, A]]] \ldots]+\ldots
\end{aligned}
$$

where G is a Hermetian operator and λ is a real parameter.
4. Just as $U\left(t, t_{0}\right)=\exp [-i H t / \hbar]$ is the time-evolution operator which displaces $\psi(\overline{\mathrm{r}}, \mathrm{t})$ in time,

$$
D\left(\bar{r}^{\prime}, \bar{r}_{0}\right)=\exp \left(-i \frac{\bar{p}}{\hbar} \cdot\left(\bar{r}-\bar{r}_{0}\right)\right)
$$

is the spatial displacement operator that moves ψ in space.
a) Defining $\mathrm{D}(\bar{\lambda})=\exp \left(-i \frac{\overline{\mathrm{p}}}{\hbar} \cdot \bar{\lambda}\right)$, show that the transformation

$$
D^{\dagger} r D=r+\lambda
$$

where λ is a displacement vector. The relationship in Problem 3 will be useful here.
b) Show that the wavefunction of the state

$$
|\phi\rangle=D|\psi\rangle
$$

is the same as the wavefunction of the state $|\psi\rangle$, only shifted a distance λ. Write out $\phi(x)=\langle x \mid \phi\rangle$ explicitly if $|\phi\rangle$ is the ground state of the one-dimensional harmonic oscillator.
5. The Hamiltonian for a degenerate two-level system is

$$
\mathrm{H}_{\mathrm{o}}=|\mathrm{a}\rangle \varepsilon_{0}\langle\mathrm{a}|+|\mathrm{b}\rangle \varepsilon_{0}\langle\mathrm{~b}|
$$

At time $\mathrm{t}=0$ a perturbation is applied:

$$
V(t)=|a\rangle V_{b a}(t)\langle b|+|b\rangle V_{a b}(t)\langle a|
$$

where $\mathrm{V}_{\mathrm{ab}}(\mathrm{t})=\mathrm{V}_{\mathrm{ba}}(\mathrm{t})^{*}=\mathrm{V}(1-\exp (-\gamma \mathrm{t}))$.
a) Does the Hamiltonian commute at all times?
b) If the system is initially in prepared in state $|\mathrm{b}\rangle(\mathrm{t} \leq 0)$, what is the state of the system for $\mathrm{t}>0$?
c) What is the probability of finding the system in $|a\rangle$ for $t>0$?
d) Describe the behavior of this system in the limits $\gamma \rightarrow 0$ and $\gamma \rightarrow \infty$.

6. Time-Development of the Density Matrix

(a) Using the time-dependent Schrödinger equation, show that the timedependence of the density matrix $\rho=|\psi\rangle\langle\psi|$ is given by the Liouville-Von Neumann equation:

$$
\frac{\partial \rho}{\partial \mathrm{t}}=\frac{-\mathrm{i}}{\hbar}[\mathrm{H}, \rho]
$$

(b) Show that the time dependence of ρ obtained by directly integrating the Liouville-Von Neumann equation from 0 to t is the same as $\rho(t)=U \rho(0) U^{\dagger}$.

