When we create $\Psi(\mathbf{Q}, t=0)$ that is not an eigenstate of the isolated molecule, time-independent \mathbf{H}, that $|\Psi(\mathbf{Q}, t)|^{2}$ will evolve.

Usually a nonstationary "coherent superposition of eigenstates" state is produced by a sudden perturbation, such as a short pulse of electromagnetic radiation.

We have looked at the evolution of a large number of "wavepackets" in 5.73 and 5.74. But there is a lack of a simple picture of how $\Psi(\mathbf{Q}, 0)$ is produced, what are the simple forces that cause it to evolve, and how all of this is related to the frequency domain spectrum.

We need to understand the nature of "the pluck".
Heller's formulation of the relationship between the absorption spectrum, $I(\omega)$, and the Fourier transform of the $\langle\Psi(t) * \Psi(0)\rangle$ autocorrelation function provides a unified conceptual and computational framework. It was revolutionary!

Electronic Absorption Spectrum \leftrightarrow FT of $\langle\Psi(t) \mid \Psi(0)\rangle$

traditional frequency domain formulation
restated as Fourier Transform of the autocorrelation function

* wavepacket evolution as responsible for features in autocorrelation function
* what are the features of the wavepacket as determined by the upper and lower electronic potential surfaces
* local view of $\mathrm{V}(\mathbf{Q})$ from wavepacket/autocorrelation picture vs. global view from FranckCondon picture.
see Heller JCP 68, 3891 (1978)

notation e single prime, g double prime

$$
\begin{aligned}
& I_{v_{g}^{\prime \prime}}(\omega)=\left|\mu_{e g}\right|^{2} \sum_{v_{e}^{\prime}} q_{\text {Franck-Condon factor }} v_{e}^{\prime} v_{g}^{\prime \prime} \delta\left(\omega-\omega_{v_{e}^{\prime}} v_{g}^{\prime \prime}\right) \\
& q_{v_{e}^{\prime}} v_{g}^{\prime \prime}=\left|\left\langle v_{e}^{\prime} \mid v_{g}^{\prime \prime}\right\rangle\right|^{2} \quad \text { vibrational overlap squared }
\end{aligned}
$$

It is necessary to know complete V_{e}^{\prime} and V_{g}^{\prime} up to at least energy of v_{e}^{\prime} and $v_{g}^{\prime \prime}$ and to integrate over all $3 \mathrm{~N}-6$ normal coordinate displacements. Usually do not have this information except for diatomic molecules. Use displaced harmonic oscillators and qualitative F-C factors derived from diatomic molecules. Problem when there is not a mode by mode correspondence between V_{e}^{\prime} and V_{g}^{\prime}. Duschinsky rotation.

Try to recast the standard frequency domain expression into wavepacket form.
Integral definition of δ-function

$$
\delta\left(\omega-\omega_{v_{e}^{\prime} v_{g}^{\prime \prime}}\right)=\frac{1}{2 \pi} \int d t \exp \left[-i\left(\omega-\omega_{v_{e}^{\prime} v_{g}^{\prime \prime}}\right) t\right]
$$

Completeness of vibrational basis set to express lower state vibrational wavefunction as linear combination of upper state vibrational wavefunctions:

$$
\begin{aligned}
& \chi_{v_{g}^{\prime \prime}}(R) \equiv\left\langle R \mid v_{g}^{\prime \prime}\right\rangle \\
& =\sum_{v_{e}^{\prime}}\langle R \underset{\text { completeness }}{\left|v_{e}^{\prime}\right\rangle}\left\langle v_{e}^{\prime} \mid v_{g}^{\prime \prime}\right\rangle=\sum_{v_{e}^{\prime}} \chi_{v_{e}^{\prime}} \underset{\underbrace{}_{\text {vi. overlap }}}{\left\langle\sum_{e}^{\prime}\right| v_{g}^{\prime \prime}}\rangle .
\end{aligned}
$$

Reassemble factors

Shaded equation is the Fourier transform of the initial $(t=0)$ (post-pluck) state formed from eigenstate $|g\rangle\left|v_{g}^{\prime \prime}\right\rangle$. It is the initial vibrational wavefunction transported onto the excited potential and allowed to evolve under the influence of \mathbf{H}_{e}.

What does this buy us?
We know $\left|v_{g}^{\prime \prime}\right\rangle$ perfectly. It is a simple Gaussian if $v_{g}^{\prime \prime}=0$.
We move this up to the excited surface where it is not an eigenstate. We project it onto eigenstates $\left|v_{e}^{\prime}\right\rangle$ and they evolve according to \mathbf{H}_{e}.

The averages $\langle\mathbf{R}\rangle$ and $\langle\mathbf{P}\rangle$ and are known perfectly at $t=0 .\langle\mathrm{P}\rangle_{\mathrm{t}=0}=0,\langle\mathrm{E}\rangle_{\mathrm{t}=0}=\langle\mathrm{E}\rangle_{\mathrm{t}} \cdot\langle\mathrm{R}\rangle_{\mathrm{t}=0}$ is $\left\langle v_{g}^{\prime \prime} R v_{g}^{\prime \prime}\right\rangle \approx R_{e}^{\prime \prime}$ if $v_{g}^{\prime \prime}=0$. Franck Condon principle gives $\langle\mathrm{E}\rangle_{\mathrm{t}}-$ vertical transition (or turning point to turning point).

So we have a Gaussian of known $\Delta \mathrm{R}, \Delta \mathrm{P}, \mathrm{E},\langle\mathrm{R}\rangle,\langle\mathrm{P}\rangle=0$ at $t=0$. It is a particle like state. It's $\langle\mathrm{R}\rangle,\langle\mathrm{P}\rangle$ evolve on V_{e}^{\prime} as a particle would evolve. The key is that we get the most important details in the spectrum from allowing the wavepacket to evolve for a very short time. It samples only the near $\left\langle v_{g}^{\prime \prime} \mathbf{R} v_{g}^{\prime \prime}\right\rangle$ region of the $V_{e}^{\prime}(\mathbf{R})$.

See Figure 9.1 This shows a wavepacket starting at the Franck-Condon point on $V_{e}^{\prime}(\mathbf{R})$. It feels a force which is minus gradient of V_{e}^{\prime}. In this case gradient is in sym. stretch (v) direction which is bound. It starts at a saddle point wrt anti sym. stretch (u) which is unbound. The wavepacket is pulled apart along u. It oscillates and spreads along v and is pulled apart irreversibly along u.

Figures removed due to copyright reasons.

See Figure 9.2 This shows what happens to $\langle\Psi(\mathrm{t}) \mid \Psi(0)\rangle$. At $t=0$ it starts to move away from itself. Be careful, the moving away could be in either coordinate or momentum space. We will look at this next. At τ_{e} a small part of the wavepacket has returned to the F-C point along the sym. stretch (v). The motion is periodic of period $\mathrm{T}=\frac{2 \pi}{\omega}$. The initial FWHM is $\delta \approx 2\left(\tau_{\mathrm{b}}-\tau_{\mathrm{a}}\right)$. So we have damped periodic motion of a wavepacket with recurrences of nearly constant width. The FT of this is shown in the lower panel.
$\mathrm{FT}\langle\Psi(\mathrm{t}) \mid \Psi(0)\rangle \propto \mathrm{I}(\omega)$

The slow recurrences give rapidly oscillating structure in $I(\omega)$,

$$
\omega=\frac{2 \pi}{T}
$$

The fast decays give an envelope of FWHM $\sim \frac{2 \pi}{\delta}$.
So we know how to read off from the spectrum the key features of the dynamics of the wavepacket.
A key point is that we are looking at the evolution of the wavepacket on V_{e}^{\prime} for a short time. The wavepacket does not move very far. It does not spread very far. It does not sample the F-C dark coordinates very much, even if they are anharmonically coupled to the FC bright coordinates.

Now we want to look at the actual form of the wavepacket and see how the shape of V_{e}^{\prime} and the F-C point affect the evolution of the wavepacket.

Figures removed due to copyright reasons.

Heller, Sundberg, and Tannor JPC 86, 1822 (1982)
for absorption from $v_{g}^{\prime \prime}=0$

$$
\begin{aligned}
& \Psi_{i}(R, t=0)=\left(\frac{2 \mu \omega_{g}}{\hbar}\right)^{1 / 4} \exp \left[\left(\frac{-\mu \omega_{g}}{2 \hbar}\right)\left(R-R_{e_{g}}\right)^{2}\right] \\
& \int d R\left|\Psi_{i}\right|^{2}=1 \\
& \Delta R \approx \operatorname{FWHM}\left(\Psi_{v_{g}^{\prime \prime}=0}\right)=\left[\frac{\hbar 8 \ln 2}{\mu \omega_{g}}\right]^{1 / 2} \\
& \operatorname{mass} \uparrow \text { or w }_{g} \uparrow \Delta \mathrm{R} \Downarrow \\
& \omega_{g}=\left[k_{g} / \mu\right]^{1 / 2} \quad k_{g}=\left.\frac{d^{2} V_{g}}{d R^{2}}\right|_{R=R_{e_{g}}}
\end{aligned}
$$

Ψ is real, thus $\langle\mathrm{P}\rangle=0$
Early time form of Gaussian wavepacket formed on V_{e}^{\prime} from $v_{g}^{\prime \prime}=0$

$$
\begin{aligned}
\Psi_{i}(R, t)=\left(\frac{2 \mu \omega_{g}}{\hbar}\right)^{1 / 4} \exp [- & \left.\frac{\mu \omega_{g}(t)}{2 \hbar}(R-R(t))^{2}\right] \exp \left[\frac{i}{\hbar} P(t)(R-R(t))\right] \\
& \times \exp \left[\frac{i}{\hbar} \gamma(t)\right]
\end{aligned}
$$

3 factors: position, momentum, phase

$$
R(t)=R_{e_{g}}+0\left(t^{2}\right) \quad \text { not moving at early time }
$$

$$
P(t)=-\left.\frac{d V}{d R}\right|_{R=R(t)} t+0\left(t^{2}\right) \quad \dot{P}(t)=-\left.\frac{d V}{d R}\right|_{R=R(t)}
$$

$$
\text { force } \dot{P}=- \text { gradient of potential }
$$

$$
\text { real } \rightarrow \text { moments of } \mathrm{R}
$$

How do we know this? Stuff in $\exp \langle$

$$
\text { imaginary } \rightarrow \text { moments of } \mathrm{P}
$$

$$
\begin{aligned}
P & =\frac{\hbar}{i} \frac{\partial}{\partial R} \\
P \Psi & =\frac{\hbar}{i} \frac{\partial \Psi}{\partial R} \quad \text { gives } \frac{\hbar}{i}(i a+b R) \Psi \\
& \int \Psi * P \Psi d R \quad \text { gives } \hbar a+\int \quad|\Psi|^{2} R d R=0
\end{aligned}
$$

phase of the center E of wp

The dominant early time change in the wavepacket is in $\langle\mathrm{P}\rangle$ and $\Delta \mathrm{P}$.

Rewriting $\Psi_{\mathrm{i}}(R, t)$ we get

$$
\begin{aligned}
& \Psi_{i}(R, t)=\left(\frac{2 \mu \omega_{g}}{\hbar}\right)^{1 / 4} \exp \left[-\left(\frac{\mu \omega_{g}}{2 \hbar}\right)\left(R-R_{e_{g}}\right)^{2}\right] \\
& \times \exp \left[\left(\frac{i t}{\hbar}\right)\left(\left.\frac{d V_{e}}{d R}\right|_{R=R_{e g}}\left(R-R_{e g}\right)+\Delta E_{e g}+V_{e}\left(R_{e_{g}}\right)\right]\right. \\
& \begin{array}{c}
\times \exp \left[\frac{i t \mu}{\hbar}\left(R-R_{e g}\right)^{2}\left(\omega_{g}^{2}-\left.\frac{1}{\mu} \frac{d^{2} V_{e}}{d R^{2}}\right|_{R=R_{e g}}\right)\right] \exp \left(i \gamma_{0} \hbar\right) \\
\text { spreading in } \mathbf{P}
\end{array}
\end{aligned}
$$

Extend from diatomic molecule to Polyatomic molecule
FC active modes - get
equilibrium in mode i
also get ω_{i}

$$
\begin{aligned}
& d^{2} V_{e}^{\prime} \\
& d Q_{i}^{2} Q_{Q_{e}}
\end{aligned}
$$

The $v=0: v=1$ intensity ratio determines the gradient of V_{e}^{\prime} at $Q_{i e_{g}}$.

What is wrong or incomplete with simple idea that initial state $\Psi(\mathbf{Q})$ is transferred intact and undistorted onto excited state potential energy surface?

* negative wavepacket on ground state energy surface is ignored
* assumes that the excitation pulse is sufficiently short and centered at the correct λ
* neglects $\boldsymbol{\mu}(\mathbf{Q})$
* neglects spatial (and temporal) distribution of excited molecules (especially the spatio-temporal correlation)

When are these simplifications justified?
What do we do when they are not justified?

