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6.00: Introduction to Computer Science and Programming 

Problem Set 12: Simulating Virus Population 
Dynamics 
Handed out: Thursday, November 20, 2008 
Due: Friday, December 5, 2008 

Introduction 
In this problem set, you will design and implement a stochastic simulation of virus population dynamics. 

There are medications for the treatment of infection by viruses; however, viruses may become resistant to one drug, sometimes to 
multiple drugs due to mutations. Despite not having gone to medical school (or maybe because of this), you can still decide on a 
good drug treatment regimen by observing how the virus population responds to the introduction of different drugs. We have been 
unable to reserve a bio lab for 6.00, so you will have to simulate the virus population dynamics with Python and reach conclusions 
based on the simulation results. 

For this problem set, you should submit both your code, ps12.py, and a writeup in pdf format, writeup.pdf (you may find this online 
pdf converter useful). 

Workload 
Please let us know how long you spend on each problem. We want to be careful not to overload you by giving out problems that 
take longer than we anticipated. 

Collaboration 
You may work with other students. However, each student should write up and hand in his or her assignment separately. Be sure to 
indicate with whom you have worked. For further details, please review the collaboration policy as stated in the syllabus. 

Getting Started 
Download and save this file. 

ps12.py: The code template for the simulation 

Background: Viruses, Drug Treatments, and Computational 
Models 
Viruses such as HIV and Influenza represent a significant challenge to modern medicine. One of the reasons that they are so difficult 
to treat is because of their ability to evolve. 

As you may know from introductory biology classes, the traits of an organism are determined by its genetic code. When organisms 
reproduce, their offspring will inherit genetic information from their parent. This genetic information will be modified, either due to 
mixing of the two parents’ genetic information, or through errors in the genome replication process, thus introducing diversity into a 
population. 

Viruses are no exception and carry and propogate their own genetic information. Two characteristics of viruses make them 
particularly difficult to treat. The first is that their replication mechanism often lacks the error checking mechanisms that is present in 
more complex organisms. Secondly, viruses replicate extremely quickly, orders of magnitude faster than humans. Thus, while we 
may be used to thinking of evolution as a process which occurs over long time scales, populations of viruses can undergo substantial 
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evolutionary changes within a single patient over the course of treatment. 

These two characteristics allow a virus population to quickly acquire genetic resistance to therapies over the course of a treatment. 
In this problem set, we will make use of simulations to explore the effect of introducing drugs on the virus population and determine 
how best to address these treatment challenges within a simplified model. 

Computational modeling has played an important role in the study of viruses such as HIV (for example, see this paper, by Time 
Magazine’s Man of the Year, David Ho). In this problem set, we will implement a highly simplified stochastic model of virus 
population dynamics in vivo. Many details have been swept under the rug (host cells are not explicitly modeled and the size of the 
population is several orders of magnitude less than the size of actual virus populations). Nevertheless, our model exhibits biologically 
relevant characteristics and will give you a chance to analyze and interpret simulation data. 

Problem 1: Implementing a Simple Simulation (No Drug 
Treatments) 
We start with a trivial model of the virus population - the patient does not take any drugs and the viruses do not acquire resistance to 
drugs. We simply model the virus population in a patient as if it were left untreated. 

At every time step of the simulation, each virus particle has a fixed probability of being cleared (eliminated from the patient’s body). 
If the virus particle is not cleared, it is considered for reproduction. Unlike the clearance probability, which is constant, the probability 
of a virus particle reproducing is a function of the virus population. With a larger virus population, there are fewer resources in the 
patient’s body to facilitate reproduction, and the probability of reproduction will be lower. One way to think of this limitation is to 
consider that virus particles need to make use of a the patient’s cells to reproduce, they cannot reproduce on their own. As the virus 
population increases, there will be fewer available host cells for viruses to utilize for reproduction. 

To implement this model, you will need to fill in the SimpleVirus class, which maintains the state of a single virus particle, and the 
SimplePatient class, which maintains the state of a virus population associated with a patient. The update() method in the 
SimplePatient class is the “inner loop” of the simulation. It modifies the state of the virus population for a single time step and 
returns the total virus population at the end of the time step. 

update() should first decide which virus particles are cleared and which survive by making use of the doesClear() method of 
each SimpleVirus instance and update the collection of SimpleVirus instances accordingly. update() should then call the 
reproduce() method for each virus particle. Based on the population density, reproduce() should either return a new instance 
of SimpleVirus representing the offspring of the virus particle, or raise a NoChildException indicating that the virus particle 
does not reproduce during the current time step. The update() method should update the attributes of the patient appropriately 
under either of these conditions. After iterating through all the virus particles, the update() method returns the number of virus 
particles in the patient at the end of the time step. 

The reproduce() method in SimpleVirus should produce an offspring by returning a new instance of SimpleVirus with 
probability: 

self.maxBirthProb * ( 1 - popDensity) 

self.maxBirthProb is the birth rate under optimal conditions (the virus population is negligible relative to the available host cells). 
popDensity is defined as the ratio of the current virus population to the maximum virus population for a patient and should be 
calculated in the update() method of the SimplePatient class. 

HINT: Be very careful about mutating a variable while iterating over its elements. Either avoid doing this entirely (consider introducing 
additional “helper” variables), or make absolutely sure that the resulting values in the data structure are correct (for example, 
carefully think about the order in which you delete variables from a list). 

Note that the mapping between time steps and actual time will vary depending on the type of virus being considered, but for this 
problem set, think of a time step as a simulated hour of time. 

See the template for detailed specifications for each of the methods in these classes. 

Fill in the implementation for the __init__(), doesClear(), and reproduce() methods of the SimpleVirus class

according to the specifications. Use random.random() for generating random numbers to ensure that your results are
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consistent with ours. 

Fill in the implementations for the __init__(), getTotalPop(), and update() methods of the SimplePatient class. 

You will test your implementation in problem 2. 

class SimpleVirus(object):
"""


 Representation of a simple virus (does not model drug effects/resistance).

"""


def __init__(self, maxBirthProb, clearProb): 
"""


 Initialize a SimpleVirus instance, saves all parameters as attributes

of the instance.  


 maxBirthProb: Maximum reproduction probability (a float between 0-1)


clearProb: Maximum clearance probability (a float between 0-1).

"""

# TODO


def doesClear(self):
"""

Stochastically determines whether this virus is cleared from the


 patient's body at a time step. 


returns: Using a random number generator (random.random()), this method

 returns True with probability self.clearProb and otherwise returns

False.

"""

# TODO


def reproduce(self, popDensity): 
""" 
Stochastically determines whether this virus particle reproduces at a 
time step. Called by the update() method in the SimplePatient and 
Patient classes. The virus particle reproduces with probability

 self.maxBirthProb * (1 - popDensity).

 If this virus particle reproduces, then reproduce() creates and returns
 the instance of the offspring SimpleVirus (which has the same
 maxBirthProb and clearProb values as its parent). 

popDensity: the population density (a float), defined as the current 
virus population divided by the maximum population.  

 returns: a new instance of the SimpleVirus class representing the 
offspring of this virus particle. The child should have the same 
maxBirthProb and clearProb values as this virus. Raises a

 NoChildException if this virus particle does not reproduce.  
""" 
# TODO 

class SimplePatient(object):
"""


 Representation of a simplified patient. The patient does not take any drugs

 and his/her virus populations have no drug resistance.

"""


def __init__(self, viruses, maxPop): 
"""


 Initialization function, saves the viruses and maxPop parameters as




attributes.

 viruses: the list representing the virus population (a list of

 SimpleVirus instances)


 maxPop: the maximum virus population for this patient (an integer)

"""

# TODO


def getTotalPop(self):
"""

Gets the current total virus population. 


returns: The total virus population (an integer)

"""

# TODO


def update(self):
"""

Update the state of the virus population in this patient for a single


 time step. update() should execute the following steps in this order:


 - Determine whether each virus particle survives and updates the list 
of virus particles accordingly.

 - The current population density is calculated. This population density
 value is used until the next call to update()

 - Determine whether each virus particle should reproduce and add
 offspring virus particles to the list of viruses in this patient.  

returns: the total virus population at the end of the update (an

integer)

"""

# TODO


Problem 2: Running and Analyzing a Simple Simulation (No 
Drug Treatments) 
You should start by understanding the population dynamics before introducing any drug. Fill in the function problem2(). This 
method should instantiate a SimplePatient and repeatedly call the update() method to simulate changes in the virus population 
over time. Save the population values over the course of the simulation and use pylab to plot the virus population as a function of 
time. Be sure to title and label your plot. 

SimplePatient should be instantiated with the following parameters: 

viruses, a list of 100 SimpleVirus instances 
maxPop, Maximum Sustainable Virus Population = 1000 

Each SimpleVirus instance in the viruses list should be initialized with the following parameters: 

maxBirthProb, Maximum Reproduction Probability for a Virus Particle = 0.1 
clearProb, Maximum Clearance Probability for a Virus Particle = 0.05 

Fill in the function problem2() which instantiates a patient, simulates changes to the virus population for 300 time steps (i.e. 300 
calls to update()), and plots the virus population as a function of time. Run the simulation multiple times and pick a 
representative plot to include in your writeup. Don’t forget to include axes labels and a title on your plot. 



To add the plot to your writeup, click on the disk icon at the bottom of the figure window and save an image file. Use Microsoft 
Word (or your word processor of choice) to import the image file. 

In your writeup, include the plot and answer this question: about how long does it take before the population stops growing? 

def problem2():
"""

Run the simulation and plot the graph for problem 2 (no drugs are used,

viruses do not have any drug resistance).


Instantiates a patient, runs a simulation for 300 timesteps, and plots the

 total virus population as a function of time.

"""

# TODO


Problem 3: Implementing a Simulation With Drugs 
In this problem, we consider the effects of both administering drugs to the patient and the ability of virus particle offspring to inherit 
or mutate genetic traits that confer drug resistance. 

As the virus population reproduces, mutations will occur in the virus offspring, adding genetic diversity to the virus population. Some 
virus particles gain favorable mutations that confer resistance to drugs. 

Drugs are given to the patient using the Patient class’s addPrescription() method. What happens when a drug is introduced? 
The drugs we consider do not directly kill virus particles lacking resistance to the drug, but prevent those virus particles from 
reproducing (much like actual drugs used to treat HIV). Virus particles with resistance to the drug continue to reproduce normally. 

In order to model this effect, we introduce a subclass of SimpleVirus, ResistantVirus. ResistantVirus maintains the state 
of a virus particle’s drug resistances, and account for the inheritance of drug resistance traits to offspring. 

We also need a representation for a patient which accounts for the use of drug treatments and manages a collection of 
ResistantVirus instances. For this we introduce the Patient class, which is a subclass of SimplePatient. Patient must 
make use of the new methods in ResistantVirus() and maintain the list of drugs that are administered to the patient. 

See the template for detailed specifications for methods of these two classses. 

Implement the ResistantVirus and Patient classes.


You will test your implementation in problem 4.


class ResistantVirus(SimpleVirus):
"""


 Representation of a virus which can have drug resistance.

"""


def __init__(self, maxBirthProb, clearProb, resistances, mutProb): 
"""

Initialize a ResistantVirus instance, saves all parameters as attributes

of the instance.


 maxBirthProb: Maximum reproduction probability (a float between 0-1)


clearProb: Maximum clearance probability (a float between 0-1).


resistances: A dictionary of drug names (strings) mapping to the state

of this virus particle's resistance (either True or False) to each drug.

e.g. {'guttagonol':False, 'grimpex',False}, means that this virus 



 particle is resistant to neither guttagonol nor grimpex.


mutProb: Mutation probability for this virus particle (a float). This is

 the probability of the offspring acquiring or losing resistance to a drug.

"""

# TODO


def getResistance(self, drug): 
"""


 Get the state of this virus particle's resistance to a drug. This method

is called by getResistPop() in Patient to determine how many virus


 particles have resistance to a drug.  


 drug: the drug (a string).


returns: True if this virus instance is resistant to the drug, False

otherwise.

"""

# TODO


def reproduce(self, popDensity, activeDrugs): 
"""

Stochastically determines whether this virus particle reproduces at a

time step. Called by the update() method in the Patient class.


If the virus particle is not resistant to any drug in activeDrugs,

 then it does not reproduce. Otherwise, the virus particle reproduces

 with probability:


 self.maxBirthProb * (1 - popDensity).


 If this virus particle reproduces, then reproduce() creates and returns

 the instance of the offspring ResistantVirus (which has the same

maxBirthProb and clearProb values as its parent).


For each drug resistance trait of the virus (i.e. each key of

 self.resistances), the offspring has probability 1-mutProb of

inheriting that resistance trait from the parent, and probability

mutProb of switching that resistance trait in the offspring.  


 For example, if a virus particle is resistant to guttagonol but not

grimpex, and `self.mutProb` is 0.1, then there is a 10% chance that

that the offspring will lose resistance to guttagonol and a 90% 

chance that the offspring will be resistant to guttagonol.


 There is also a 10% chance that the offspring will gain resistance to

 grimpex and a 90% chance that the offspring will not be resistant to

grimpex.


popDensity: the population density (a float), defined as the current

virus population divided by the maximum population


activeDrugs: a list of the drug names acting on this virus particle

(a list of strings). 


returns: a new instance of the ResistantVirus class representing the

offspring of this virus particle. The child should have the same

maxBirthProb and clearProb values as this virus. Raises a


 NoChildException if this virus particle does not reproduce.  

"""

# TODO


class Patient(SimplePatient):
"""


 Representation of a patient. The patient is able to take drugs and his/her




 virus population can acquire resistance to the drugs he/she takes. 
""" 

def __init__(self, viruses, maxPop): 
"""


 Initialization function, saves the viruses and maxPop parameters as

 attributes. Also initializes the list of drugs being administered

 (which should initially include no drugs).  


 viruses: the list representing the virus population (a list of

 SimpleVirus instances)


 maxPop: the maximum virus population for this patient (an integer)

"""

# TODO


def addPrescription(self, newDrug): 
"""


 Administer a drug to this patient. After a prescription is added, the 

drug acts on the virus population for all subsequent time steps. If the


 newDrug is already prescribed to this patient, the method has no effect.


newDrug: The name of the drug to administer to the patient (a string).


 postcondition: list of drugs being administered to a patient is updated

"""

# TODO


def getPrescriptions(self):
"""


 Returns the drugs that are being administered to this patient.


returns: The list of drug names (strings) being administered to this

patient.

"""

# TODO


def getResistPop(self, drugResist): 
"""


 Get the population of virus particles resistant to the drugs listed in 

 drugResist.  


 drugResist: Which drug resistances to include in the population (a list

of strings - e.g. ['guttagonol'] or ['guttagonol', 'grimpex'])


returns: the population of viruses (an integer) with resistances to all

drugs in the drugResist list.

"""

# TODO


def update(self):
"""

Update the state of the virus population in this patient for a single


 time step. update() should execute these actions in order:


 - Determine whether each virus particle survives and update the list of 
 virus particles accordingly

 - The current population density is calculated. This population density
 value is used until the next call to update().

 - Determine whether each virus particle should reproduce and add
 offspring virus particles to the list of viruses in this patient. 
 The listof drugs being administered should be accounted for in the 



determination of whether each virus particle reproduces. 

returns: the total virus population at the end of the update (an

integer)

"""

# TODO


Problem 4: Running and Analyzing a Simulation with a Drug 
In this problem, we will use the implementation you filled-in for problem 3 to run a simulation. You will create a Patient instance 
with the following parameters, then run the simulation and answer several questions: 

viruses, a list of 100 ResistantVirus instances 
maxPop, Maximum Sustainable Virus Population = 1000 

Each ResistantVirus instance in the viruses list should be initialized with the following parameters: 

maxBirthProb, Maximum Reproduction Probability for a Virus Particle = 0.1 
clearProb, Maximum Clearance Probability for a Virus Particle = 0.05 
resistances, The virus’s genetic resistance to drugs in the experiment = {‘guttagonol’:False} 
mutProb, Probability of a mutation in a virus particle’s offspring = 0.005 

Run a simulation that consists of 150 time steps, followed by the addition of the drug, guttagonol, followed by another 150 time 
steps. As with problem 2, perform multiple trials and make sure that your results are repeatable and representative. 

Plot the record of the total population and the population of guttagonol-resistant virus particles. What trends do you observe? 
Are the trends consistent with your intuition? Include the plot and your answers to these questions in the writeup. 

def problem4():
"""

Runs simulations and plots graphs for problem 4.


Instantiates a patient, runs a simulation for 150 timesteps, adds 
guttagonol, and runs the simulation for an additional 150 timesteps.

 total virus population vs. time  and guttagonol-resistant virus population 
vs. time are plotted 
""" 
# TODO 

Problem 5: The Effect of Delaying Treatment on Patient 
Outcome 
In this problem, we explore the effect of delaying treatment on the ability of the drug to eradicate the virus population. You will need 
to run multiple simulations to observe trends in the distributions of patient outcomes. 

Run the simulation for 300, 150, 75, and 0 time steps before administering guttagonol to the patient. Then run the simulation for 
an additional 150 time steps. Use the same initialization parameters for ResistantVirus and Patient as you did for 
Problem 4. 

For each of the 4 conditions, repeat the experiment multiple times, while recording the final virus populations. Use pylab’s hist() 
function to plot a histogram of the final virus populations under each condition. The x-axis of the histogram should be the final 
total virus population and the y-axis of the histogram should be the number of patients belonging to each histogram bin. You 



should decide the number of times you need to repeat each condition in order to obtain a reasonable distribution. Justify your 
decision in your writeup. 

Include the four histograms in your writeup and answer the following questions: If you consider final virus particle counts of 
0–50 to be cured (or in remission), what percentage of patients were cured (or in remission) at the end of the simulation? 
What is the relationship between the number of patients cured (or in remission) and the delay in treatment? Explain how this 
relationship arises from the model. 

HINT: It may take some time to run enough trials to arrive at a distribution for each condition. Debug your code using a small 
number of trials. Once your code is debugged, use a larger number of trials and expect the simulation to take a few minutes. 
Use print statements to monitor the simulation’s progress. The simulation should take about 3–6 minutes to run a reasonable 
number of trials. 

def problem5():
"""


 Runs simulations and make histograms for problem 5.


 Runs multiple simulations to show the relationship between delayed treatment

 and patient outcome.


Histograms of final total virus populations are displayed for delays of 300,

150, 75, 0 timesteps (followed by an additional 150 timesteps of

simulation).

"""

# TODO


Problem 6: Designing a Treatment Plan with Two Drugs 
One approach to addressing the problem of acquired drug resisstance is to use cocktails - administration of multiple drugs that act 
independently to attack the virus population. 

In problems 6 and 7, we use two independently-acting drugs to treat the virus. We will use this model to decide the best way of 
administering the two drugs. Specifically, we examine the effect of a lag time between administering the first and second drugs on 
patient outcomes. 

For problems 6–7, use the following parameters to initialize a Patient: 

viruses, a list of 100 ResistantVirus instances 
maxPop, Maximum Sustainable Virus Population = 1000 

Each ResistantVirus instance in the viruses list should be initialized with the following parameters: 

maxBirthProb, Maximum Reproduction Probability for a Virus Particle = 0.1 
clearProb, Maximum Clearance Probability for a Virus Particle = 0.05 
resistances, The virus’s genetic resistance to drugs in the experiment = {‘guttagonol’:False ‘grimpex’:False} 
mutProb, Probability of a mutation in a virus particle’s offspring = 0.005 

Run the simulation for 150 time steps before administering guttagonol to the patient. Then run the simulation for 300, 150, 75, 
and 0 time steps before administering a second drug, grimpex, to the patient. Finally, run the simulation for an additional 150 
time steps. 

For each of these 4 conditions, repeat the experiment 30 times, while recording the final virus populations. Use pylab’s hist() 
function to plot a histogram of the final total virus populations under each condition. 

Include the histogram in your writeup and answer the following: What percentage of patients were cured (or in remission) at 
the end of the simulation? What is the relationship between the number of patients cured (or in remission) and the time 
between administering the two drugs? 



HINT: As with problem 5, the simulation wll take a few minutes to run. Use print statements to monitor the simulation’s 
progress. 

def problem6():
"""


 Runs simulations and make histograms for problem 6.


 Runs multiple simulations to show the relationship between administration
 of multiple drugs and patient outcome.

 Histograms of final total virus populations are displayed for lag times of 
150, 75, 0 timesteps between adding drugs (followed by an additional 150

 timesteps of simulation). 
""" 
# TODO 

Problem 7: Analysis of Virus Population Dynamics With Two 
Drugs 
To better understand the relationship between patient outcome and the time between administering the drugs, we examine the virus 
population dynamics of two individual simulations from problem 6 in more detail. 

Run a simulation for 150 time steps before administering guttagonol to the patient. Then run the simulation for an additional 300 
time steps before administering a second drug, grimpex, to the patient. Then run the simulation for an additional 150 time 
steps. Use the same initialization parameters for Patient and Resistantvirus as you did for problem 6. 

Run a second simulation for 150 time steps before simultaneously administering guttagonol and grimpex to the patient. Then 
run the simulation for an additional 150 time steps. 

Make sure you run the simulation multiple times to ensure that you are analyzing results that are representative of the most 
common outcome. 

For both of these simulations, plot the total population, the population of guttagonol-resistant virus, the population of grimpex-
resistant virus, and the population of viruses that are resistant to both drugs as a function of time. 

Explain why the relationship between the patient outcome and the time between administering the two drugs arises. 

def problem7():
"""

Run simulations and plot graphs examining the relationship between


 administration of multiple drugs and patient outcome.


Plots of total and drug-resistant viruses vs. time are made for a

 simulation with a 300 time step delay between administering the 2 drugs and

 a simulations for which drugs are administered simultaneously.

"""

# TODO


Problem 8: Patient Non-compliance 

A very common problem is that a patient may not consistently take the drugs they are prescribed. They can sometimes forget 



/


or refuse to take their drugs. Describe in your writeup (do not write any code) how you would model such effects. 

Hand-In Procedure 
1.	 Save. Your modified code should be in a file called ps12.py. Your writeup should be called writeup.pdf. 

2.	 Time and collaboration info. At the start of the file, in a comment, write down the number of hours (roughly) you spent on 
this problem set, and the names of whomever you collaborated with. For example: 

# Problem Set 12

# Name: Jane Lee


 # Collaborators: John Doe

# Time: 1:30


 ... your code goes here ... 

3.	 Sanity checks. After you are done with the problem set, do these sanity checks: 

Run the ps12.py and make sure it can be run without errors. 

http:ps12.py

