Lecture 13: Graphs I: Breadth First Search

Lecture Overview

- Applications of Graph Search
- Graph Representations
- Breadth-First Search

Recall:

Graph $G=(V, E)$

- $V=$ set of vertices (arbitrary labels)
- $E=$ set of edges i.e. vertex pairs (v, w)
- ordered pair \Longrightarrow directed edge of graph
- unordered pair \Longrightarrow undirected

Figure 1: Example to illustrate graph terminology

Graph Search

"Explore a graph", e.g.:

- find a path from start vertex s to a desired vertex
- visit all vertices or edges of graph, or only those reachable from s

Applications:

There are many.

- web crawling (how Google finds pages)
- social networking (Facebook friend finder)
- network broadcast routing
- garbage collection
- model checking (finite state machine)
- checking mathematical conjectures
- solving puzzles and games

Pocket Cube:

Consider a $2 \times 2 \times 2$ Rubik's cube

Configuration Graph:

- vertex for each possible state
- edge for each basic move (e.g., 90 degree turn) from one state to another
- undirected: moves are reversible

Diameter ("God's Number")
11 for $2 \times 2 \times 2,20$ for $3 \times 3 \times 3, \Theta\left(n^{2} / \lg n\right)$ for $n \times n \times n$ [Demaine, Demaine, Eisenstat Lubiw Winslow 2011]

\# vertices $=8!\cdot 3^{8}=264,539,520$ where 8 ! comes from having 8 cubelets in arbitrary positions and 3^{8} comes as each cubelet has 3 possible twists.

This can be divided by 24 if we remove cube symmetries and further divided by 3 to account for actually reachable configurations (there are 3 connected components).

Graph Representations: (data structures)

Adjacency lists:

Array $A d j$ of $|V|$ linked lists

- for each vertex $u \in V, \operatorname{Adj}[u]$ stores u 's neighbors, i.e., $\{v \in V \mid(u, v) \in E\} . \quad(u, v)$ are just outgoing edges if directed. (See Fig. 2 for an example.)

Figure 2: Adjacency List Representation: Space $\Theta(V+E)$

- in Python: $A d j=$ dictionary of list/set values; vertex $=$ any hashable object (e.g., int, tuple)
- advantage: multiple graphs on same vertices

Implicit Graphs:

$\operatorname{Adj}(u)$ is a function - compute local structure on the fly (e.g., Rubik's Cube). This requires "Zero" Space.

Object-oriented Variations:

- object for each vertex u
- u. neighbors $=$ list of neighbors i.e. $\operatorname{Adj}[u]$

In other words, this is method for implicit graphs

Incidence Lists:

- can also make edges objects

- u.edges $=$ list of (outgoing) edges from u.
- advantage: store edge data without hashing

Breadth-First Search

Explore graph level by level from s

- level $0=\{s\}$
- level $i=$ vertices reachable by path of i edges but not fewer

Figure 3: Illustrating Breadth-First Search

- build level $i>0$ from level $i-1$ by trying all outgoing edges, but ignoring vertices from previous levels

Breadth-First-Search Algorithm

$$
\begin{aligned}
& \text { BFS (V,Adj,s): } \\
& \text { level }=\{\mathrm{s}: 0\} \\
& \text { parent }=\{s: \text { None }\} \\
& i=1 \\
& \text { frontier }=[s] \quad \text { \# previous level, } i-1 \\
& \text { while frontier: } \\
& \text { next }=[] \quad \# \text { next level, } i \\
& \text { for } u \text { in frontier: } \\
& \text { for } v \text { in Adj }[u] \text { : } \\
& \text { if } v \text { not in level: \# not yet seen } \\
& \text { level }[v]=i \quad \sharp=\text { level }[u]+1 \\
& \text { parent }[v]=u \\
& \text { next.append }(v) \\
& \text { frontier }=\text { next } \\
& i+=1
\end{aligned}
$$

Example

Figure 4: Breadth-First Search Frontier

Analysis:

- vertex V enters next (\& then frontier) only once (because level $[v]$ then set)
base case: $v=s$
- $\Longrightarrow \operatorname{Adj}[v]$ looped through only once

$$
\text { time }=\sum_{v \in V}|A d j[V]|=\left\{\begin{array}{l}
|E| \text { for directed graphs } \\
2|E| \text { for undirected graphs }
\end{array}\right.
$$

- $\Longrightarrow O(E)$ time
- $O(V+E)$ ("LINEAR TIME") to also list vertices unreachable from v (those still not assigned level)

Shortest Paths:

cf. L15-18

- for every vertex v, fewest edges to get from s to v is

$$
\left\{\begin{array}{l}
\operatorname{level}[v] \text { if } v \text { assigned level } \\
\infty \quad \text { else (no path) }
\end{array}\right.
$$

- parent pointers form shortest-path tree $=$ union of such a shortest path for each v \Longrightarrow to find shortest path, take $v, \operatorname{parent}[v]$, parent $[$ parent $[v]]$, etc., until s (or None)

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

