
Lecture 13 Graphs I: BFS 6.006 Fall 2011

Lecture 13: Graphs I: Breadth First Search

Lecture Overview

• Applications of Graph Search

• Graph Representations

• Breadth-First Search

Recall:

Graph G = (V,E)

• V = set of vertices (arbitrary labels)

• E = set of edges i.e. vertex pairs (v, w)

– ordered pair =⇒ directed edge of graph

– unordered pair =⇒ undirected

a b

c d

a

b c

UNDIRECTED DIRECTED

e.g. V = {a,b,c,d}
E = {{a,b},{a,c},
 {b,c},{b,d},
 {c,d}}

V = {a,b,c}
E = {(a,c),(b,c),
 (c,b),(b,a)}

Figure 1: Example to illustrate graph terminology

Graph Search

“Explore a graph”, e.g.:

• find a path from start vertex s to a desired vertex

• visit all vertices or edges of graph, or only those reachable from s

1

Lecture 13 Graphs I: BFS 6.006 Fall 2011

Applications:

There are many.

• web crawling (how Google finds pages)

• social networking (Facebook friend finder)

• network broadcast routing

• garbage collection

• model checking (finite state machine)

• checking mathematical conjectures

• solving puzzles and games

Pocket Cube:

Consider a 2 2 2 Rubik’s cube× ×

Configuration Graph:

• vertex for each possible state

• edge for each basic move (e.g., 90 degree turn) from one state to another

• undirected: moves are reversible

Diameter (“God’s Number”)

11 for 2× 2 × 2, 20 for 3 × 3 × 3, Θ(n2/ lg n) for n × n × n [Demaine, Demaine, Eisenstat

Lubiw Winslow 2011]

. . . “breadth-
first
tree”

possible
first moves

reachable
in two steps
but not one

“hardest
configs”

solved

2

Lecture 13 Graphs I: BFS 6.006 Fall 2011

vertices = 8! · 38 = 264, 539, 520 where 8! comes from having 8 cubelets in arbitrary

positions and 38 comes as each cubelet has 3 possible twists.

This can be divided by 24 if we remove cube symmetries and further divided by 3 to account

for actually reachable configurations (there are 3 connected components).

Graph Representations: (data structures)

Adjacency lists:

Array Adj of |V | linked lists

• for each vertex u ∈ V,Adj[u] stores u’s neighbors, i.e., {v ∈ V | (u, v) ∈ E}. (u, v)

are just outgoing edges if directed. (See Fig. 2 for an example.)

a

b c

a

b

c

c

c

b

a

Adj

Figure 2: Adjacency List Representation: Space Θ(V + E)

• in Python: Adj = dictionary of list/set values; vertex = any hashable object (e.g.,

int, tuple)

• advantage: multiple graphs on same vertices

Implicit Graphs:

Adj(u) is a function — compute local structure on the fly (e.g., Rubik’s Cube). This requires

“Zero” Space.

3

Lecture 13 Graphs I: BFS 6.006 Fall 2011

Object-oriented Variations:

• object for each vertex u

• u.neighbors = list of neighbors i.e. Adj[u]

In other words, this is method for implicit graphs

Incidence Lists:

• can also make edges objects

e.a e.be

• u.edges = list of (outgoing) edges from u.

• advantage: store edge data without hashing

Breadth-First Search

Explore graph level by level from s

• level 0 = {s}

level i = vertices reachable by path of i edges but not fewer•

. . .
level0

s

level1
level2

last
level

Figure 3: Illustrating Breadth-First Search

4

Lecture 13 Graphs I: BFS 6.006 Fall 2011

• build level i > 0 from level i − 1 by trying all outgoing edges, but ignoring vertices

from previous levels

Breadth-First-Search Algorithm

BFS (V,Adj,s): See CLRS for queue-based implementation

level = { s: 0 }
parent = {s : None }
i = 1

frontier = [s] # previous level, i− 1

while frontier:

next = [] # next level, i

for u in frontier:

for v in Adj [u]:

if v not in level: # not yet seen

level[v] = i] = level[u] + 1

parent[v] = u

next.append(v)

frontier = next

i + =1

Example

a s d f

vcxz

1 0 2 3

322 1

level 0
level 1

level 2 level 3

frontier0 = {s}
frontier1 = {a, x}
frontier2 = {z, d, c}
frontier3 = {f, v}
(not x, c, d)

Figure 4: Breadth-First Search Frontier

Analysis:

• vertex V enters next (& then frontier)

only once (because level[v] then set)

base case: v = s

5

Lecture 13 Graphs I: BFS 6.006 Fall 2011

• =⇒ Adj[v] looped through only once

time =
∑ E for directed graphs|Adj[V]| = | |

v∈V

{
2|E| for undirected graphs

• =⇒ O(E) time

• O(V +E) (“LINEAR TIME”) to also list vertices unreachable from v (those still not

assigned level)

Shortest Paths:

cf. L15-18

• for every vertex v, fewest edges to get from s to v is{
level[v] if v assigned level

∞ else (no path)

• parent pointers form shortest-path tree = union of such a shortest path for each v

=⇒ to find shortest path, take v, parent[v], parent[parent[v]], etc., until s (or None)

6

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

