
Lecture 9 Hashing II 6.006 Fall 2011

Lecture 9: Hashing II

Lecture Overview

• Table Resizing

• Amortization

• String Matching and Karp-Rabin

• Rolling Hash

Recall:

Hashing with Chaining:

1

.
..

.
U

k

k

k k

k

1

2

3

4
k

.

.

.
4k

.
k 2

k3

all possible
keys

h

table

m slots

collisions

expected size
α = n/m

}

keys
in set DS

n

Figure 1: Hashing with Chaining

Expected cost (insert/delete/search): Θ(1 + α), assuming simple uniform hashing OR

universal hashing & hash function h takes O(1) time.

Division Method:

h(k) = k mod m

where m is ideally prime

Multiplication Method:

h(k) = [(a · k) mod 2w]� (w − r)

where a is a random odd integer between 2w−1 and 2w, k is given by w bits, and m = table

size = 2r.

1

Lecture 9 Hashing II 6.006 Fall 2011

How Large should Table be?

• want m = Θ(n) at all times

• don’t know how large n will get at creation

• m too small =⇒ slow; m too big =⇒ wasteful

Idea:

Start small (constant) and grow (or shrink) as necessary.

Rehashing:

To grow or shrink table hash function must change (m, r)

=⇒ must rebuild hash table from scratch

for item in old table: → for each slot, for item in slot

insert into new table

=⇒ Θ(n+m) time = Θ(n) if m = Θ(n)

How fast to grow?

When n reaches m, say

• m+ =1?

=⇒ rebuild every step

=⇒ n inserts cost Θ(1 + 2 + · · ·+ n) = Θ(n2)

• m ∗ =2? m = Θ(n) still (r+ =1)

=⇒ rebuild at insertion 2i

=⇒ n inserts cost Θ(1 + 2 + 4 + 8 + · · · + n) where n is really the next power of 2

= Θ(n)

• a few inserts cost linear time, but Θ(1) “on average”.

Amortized Analysis

This is a common technique in data structures — like paying rent: $1500/month ≈ $50/day

• operation has amortized cost T (n) if k operations cost ≤ k · T (n)

• “T (n) amortized” roughly means T (n) “on average”, but averaged over all ops.

• e.g. inserting into a hash table takes O(1) amortized time.

2

Lecture 9 Hashing II 6.006 Fall 2011

Back to Hashing:

Maintain m = Θ(n) =⇒ α = Θ(1) =⇒ support search in O(1) expected time (assuming

simple uniform or universal hashing)

Delete:

Also O(1) expected as is.

• space can get big with respect to n e.g. n× insert, n× delete

• solution: when n decreases to m/4, shrink to half the size =⇒ O(1) amortized cost

for both insert and delete — analysis is harder; see CLRS 17.4.

Resizable Arrays:

• same trick solves Python “list” (array)

• =⇒ list.append and list.pop in O(1) amortized

0 1 2 3 4 5 6 7

list unused

}}
Figure 2: Resizeable Arrays

String Matching

Given two strings s and t, does s occur as a substring of t? (and if so, where and how many

times?)

E.g. s = ‘6.006’ and t = your entire INBOX (‘grep’ on UNIX)

Simple Algorithm:

any(s == t[i : i+ len(s)] for i in range(len(t) − len(s)))

— O(|s|) time for each substring comparison

=⇒ O(|s| · (|t| − |s|)) time

= O(|s| · |t|) potentially quadratic

3

Lecture 9 Hashing II 6.006 Fall 2011

t

s

s

Figure 3: Illustration of Simple Algorithm for the String Matching Problem

Karp-Rabin Algorithm:

• Compare h(s) == h(t[i : i+ len(s)])

• If hash values match, likely so do strings

– can check s == t[i : i+ len(s)] to be sure ∼ cost O(|s|)

– if yes, found match — done

1
– if no, happened with probability <

|s
= expected cost is O(1) per i.

|
⇒

• need suitable hash function.

• expected time = O(|s|+ |t| · cost(h)).

– naively h(x) costs |x|

– we’ll achieve O(1)!

– idea: t[i : i+ len(s)] ≈ t[i+ 1 : i+ 1 + len(s)].

Rolling Hash ADT

Maintain string x subject to

• r(): reasonable hash function h(x) on string x

• r.append(c): add letter c to end of string x

• r.skip(c): remove front letter from string x, assuming it is c

Karp-Rabin Application:

for c in s: rs.append(c)

for c in t[:len(s)]: rt.append(c)

if rs() == rt(): ...

This first block of code is O(s)| |

4

Lecture 9 Hashing II 6.006 Fall 2011

for i in range(len(s), len(t)):

rt.skip(t[i-len(s)])

rt.append(t[i])

if rs() == rt(): ...

The second block of code is O(|t|) + O(# matches− |s|) to verify.

Data Structure:

Treat string x as a multidigit number u in base a where a denotes the alphabet size, e.g.,

256

• r() = u mod p for (ideally random) prime p ≈ |s| or |t| (division method)

• r stores u mod p and |x| (really a|x|), not u

=⇒ smaller and faster to work with (u mod p fits in one machine word)

• r.append(c): (u · a+ ord(c)) mod p = [(u mod p) · a+ ord(c)] mod p

• r.skip(c): [u− ord(c) · (a|u|−1 mod p)] mod p

= [(u mod p)− ord(c) · (a|x−1| mod p)] mod p

5

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

