Lecture 9: Hashing II

Lecture Overview

- Table Resizing
- Amortization
- String Matching and Karp-Rabin
- Rolling Hash

Recall:

Hashing with Chaining:

Figure 1: Hashing with Chaining
Expected cost (insert/delete/search): $\Theta(1+\alpha)$, assuming simple uniform hashing $O R$ universal hashing \& hash function h takes $O(1)$ time.

Division Method:

$$
h(k)=k \quad \bmod m
$$

where m is ideally prime

Multiplication Method:

$$
h(k)=\left[(a \cdot k) \bmod 2^{w}\right] \gg(w-r)
$$

where a is a random odd integer between 2^{w-1} and $2^{w}, k$ is given by w bits, and $m=$ table size $=2^{r}$.

How Large should Table be?

- want $m=\Theta(n)$ at all times
- don't know how large n will get at creation
- m too small \Longrightarrow slow; m too big \Longrightarrow wasteful

Idea:

Start small (constant) and grow (or shrink) as necessary.

Rehashing:

To grow or shrink table hash function must change (m, r)
\Longrightarrow must rebuild hash table from scratch
for item in old table: \rightarrow for each slot, for item in slot
insert into new table
$\Longrightarrow \Theta(n+m)$ time $=\Theta(n)$ if $m=\Theta(n)$

How fast to grow?

When n reaches m, say

- $m+=1$?
\Longrightarrow rebuild every step
$\Longrightarrow n$ inserts cost $\Theta(1+2+\cdots+n)=\Theta\left(n^{2}\right)$
- $m *=2 ? m=\Theta(n)$ still $(r+=1)$
\Longrightarrow rebuild at insertion 2^{i}
$\Longrightarrow n$ inserts cost $\Theta(1+2+4+8+\cdots+n)$ where n is really the next power of 2 $=\Theta(n)$
- a few inserts cost linear time, but $\Theta(1)$ "on average".

Amortized Analysis

This is a common technique in data structures - like paying rent: $\$ 1500 /$ month $\approx \$ 50 /$ day

- operation has amortized cost $T(n)$ if k operations cost $\leq k \cdot T(n)$
- " $T(n)$ amortized" roughly means $T(n)$ "on average", but averaged over all ops.
- e.g. inserting into a hash table takes $O(1)$ amortized time.

Back to Hashing:

Maintain $m=\Theta(n) \Longrightarrow \alpha=\Theta(1) \Longrightarrow$ support search in $O(1)$ expected time (assuming simple uniform or universal hashing)

Delete:

Also $O(1)$ expected as is.

- space can get big with respect to n e.g. $n \times$ insert, $n \times$ delete
- solution: when n decreases to $m / 4$, shrink to half the size $\Longrightarrow O(1)$ amortized cost for both insert and delete - analysis is harder; see CLRS 17.4.

Resizable Arrays:

- same trick solves Python "list" (array)
- \Longrightarrow list.append and list.pop in $O(1)$ amortized

Figure 2: Resizeable Arrays

String Matching

Given two strings s and t, does s occur as a substring of t ? (and if so, where and how many times?)
E.g. $s={ }^{`} 6.006$ ' and $t=$ your entire INBOX ('grep' on UNIX)

Simple Algorithm:

$$
\begin{aligned}
\operatorname{any}(s & ==t[i: i+\operatorname{len}(\mathrm{s})] \text { for } i \text { in range }(\operatorname{len}(t)-\operatorname{len}(s))) \\
& -O(|s|) \text { time for each substring comparison } \\
& \Longrightarrow O(|s| \cdot(|t|-|s|)) \text { time } \\
& =O(|s| \cdot|t|) \quad \text { potentially quadratic }
\end{aligned}
$$

Figure 3: Illustration of Simple Algorithm for the String Matching Problem

Karp-Rabin Algorithm:

- Compare $h(s)==h(t[i: i+\operatorname{len}(\mathrm{s})])$
- If hash values match, likely so do strings
- can check $s==t[i: i+\operatorname{len}(\mathrm{s})]$ to be sure $\sim \operatorname{cost} O(|s|)$
- if yes, found match - done
- if no, happened with probability $<\frac{1}{|s|}$ \Longrightarrow expected cost is $O(1)$ per i.
- need suitable hash function.
- expected time $=O(|s|+|t| \cdot \operatorname{cost}(\mathrm{h}))$.
- naively $h(x)$ costs $|x|$
- we'll achieve $O(1)$!
- idea: $t[i: i+\operatorname{len}(s)] \approx t[i+1: i+1+\operatorname{len}(s)]$.

Rolling Hash ADT

Maintain string x subject to

- $\underline{r(): ~ r e a s o n a b l e ~ h a s h ~ f u n c t i o n ~} h(x)$ on string x
- r.append $(c):$ add letter c to end of string x
- r.skip $(c):$ remove front letter from string x, assuming it is c

Karp-Rabin Application:

```
for c in s: rs.append(c)
for c in t[:len(s)]: rt.append(c)
if rs() == rt(): ...
```

This first block of code is $O(|s|)$

```
for i in range(len(s), len(t)):
    rt.skip(t[i-len(s)])
    rt.append(t[i])
    if rs() == rt(): ...
```

The second block of code is $O(|t|)+O(\#$ matches $-|\mathrm{s}|)$ to verify.

Data Structure:

Treat string x as a multidigit number u in base a where a denotes the alphabet size, e.g., 256

- $r()=u \bmod p$ for (ideally random) prime $p \approx|s|$ or $|t|$ (division method)
- r stores $u \bmod p$ and $|x|$ (really $\left.a^{|x|}\right)$, not u
\Longrightarrow smaller and faster to work with $(u \bmod p$ fits in one machine word)
- r.append $(c):(u \cdot a+\operatorname{ord}(c)) \bmod p=[(u \bmod p) \cdot a+\operatorname{ord}(c)] \bmod p$
- r.skip $(c):\left[u-\operatorname{ord}(c) \cdot\left(a^{|u|-1} \bmod p\right)\right] \bmod p$

$$
=\left[(u \bmod p)-\operatorname{ord}(c) \cdot\left(a^{|x-1|} \bmod p\right)\right] \bmod p
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

