
Lecture 21 Dynamic Programming III of IV 6.006 Fall 2011

Lecture 21: Dynamic Programming III

Lecture Overview

• Subproblems for strings

• Parenthesization

• Edit distance (& longest common subseq.)

• Knapsack

• Pseudopolynomial Time

Review:

* 5 easy steps to dynamic programming

(a) define subproblems count # subproblems

(b) guess (part of solution) count # choices

(c) relate subproblem solutions compute time/subproblem

(d) recurse + memoize time = time/subproblem · # sub-

problems

OR build DP table bottom-up

check subproblems acyclic/topological order

(e) solve original problem: = a subproblem

OR by combining subproblem solutions =⇒ extra time

* problems from L20 (text justification, Blackjack) are on sequences (words, cards)

* useful problems for strings/sequences x:

suffixes x[i :]
}

Θ(|x|) ← cheaper =⇒ use if possible

prefixes x[: i]

substrings x[i : j]
}

Θ(x2)

1

Lecture 21 Dynamic Programming III of IV 6.006 Fall 2011

Parenthesization:

Optimal evaluation of associative expression A[0] · A[1] · · ·A[n − 1] — e.g., multiplying

rectangular matrices

. .

A B C

. .

(A.B) C A (B.C)

θ(n2) time θ(n) time

vs

Figure 1:

2. guessing = outermost multiplication (· · ·)(· · ·)
↑k−1 ↑k

=⇒ # choices = O(n)

︸︷︷︸ ︸︷︷︸
1. subproblems = prefixes & suffixes? NO

= cost of substring A[i : j]

=⇒ # subproblems = Θ(n2)

3. recurrence:

• DP[i, j] = min(DP [i, k] + DP[k, j]+ cost of multiplying (A[i] · · ·A[k − 1]) by

(A[k] · · ·A[j − 1]) for k in range(i + 1, j))

i j

i jk
DAG

• DP[i, i + 1] = 0

=⇒ cost per subproblem = O(j − i) = O(n)

4. topological order: increasing substring size. Total time = O(n3)

5. original problem = DP [0, n]

(& use parent pointers to recover parens.)

NOTE: Above DP is not shortest paths in the subproblem DAG! Two dependencies =⇒
not path!

2

Lecture 21 Dynamic Programming III of IV 6.006 Fall 2011

Edit Distance

Used for DNA comparison, diff, CVS/SVN/. . . , spellchecking (typos), plagiarism detection,

etc.

Given two strings x & y, what is the cheapest possible sequence of character edits (insert

c, delete c, replace c → c’) to transform x into y?

• cost of edit depends only on characters c, c′

• for example in DNA, C → G common mutation =⇒ low cost

• cost of sequence = sum of costs of edits

• If insert & delete cost 1, replace costs 0, minimum edit distance equivalent to find-

ing longest common subsequence. Note that a subsequence is sequential but not

necessarily contiguous.

• for example H I E R O G L Y P H O L O G Y vs. M I C H A E L A N G E L O

=⇒ HELLO

Subproblems for multiple strings/sequences

• combine suffix/prefix/substring subproblems

• multiply state spaces

• still polynomial for O(1) strings

Edit Distance DP

(1) subproblems: c(i, j) = edit-distance(x[i :], y[j :]) for 0 ≤ i < |x|, 0 ≤ j < |y|
=⇒ Θ(|x| · |y|) subproblems

(2) guess whether, to turn x into y, (3 choices):

• x[i] deleted

• y[j] inserted

• x[i] replaced by y[j]

(3) recurrence: c(i, j) = maximum of:

• cost(delete x[i]) + c(i + 1, j) if i < |x|,
• cost(insert y[j]) + c(i, j + 1) if j < |y|,
• cost(replace x[i]→ y[j]) + c(i + 1, j + 1) if i < |x|&j < |y|

base case: c(|x|, |y|) = 0

=⇒ Θ(1) time per subproblem

3

Lecture 21 Dynamic Programming III of IV 6.006 Fall 2011

(4) topological order: DAG in 2D table:

• bottom-up OR right to left

• only need to keep last 2 rows/columns

=⇒ linear space

• total time = Θ(|x| · |y|)

(5) original problem: c(0, 0)

Knapsack:

Knapsack of size S you want to pack

• item i has integer size si & real value vi

• goal: choose subset of items of maximum total value subject to total size ≤ S

First Attempt:

1. subproblem = value for suffix i: WRONG

2. guessing = whether to include item i =⇒ # choices = 2

3. recurrence:

��• DP [i] = max(DP [i + 1], vi + DP [i + 1] if�s �i ≤ S?!)

• not enough information to know whether item i fits — how much space is left?

GUESS!

Correct:

1. subproblem = value for suffix i:

given knapsack of size X

=⇒ # subproblems = O(nS) !

0 |y|
0

|x|

i

j

4

Lecture 21 Dynamic Programming III of IV 6.006 Fall 2011

3. recurrence:

• DP [i,X] = max(DP [i + 1, X], vi + DP [i + 1, X − si] if si ≤ X)

• DP [n,X] = 0

=⇒ time per subproblem = O(1)

4. topological order: for i in n, . . . , 0: for X in 0, . . . S

total time = O(nS)

5. original problem = DP [0, S]

(& use parent pointers to recover subset)

AMAZING: effectively trying all possible subsets! . . . but is this actually fast?

Polynomial time

Polynomial time = polynomial in input size

• here Θ(n) if number S fits in a word

• O(n lgS) in general

• S is exponential in lgS (not polynomial)

Pseudopolynomial Time

Pseudopolynomial time = polynomial in the problem size AND the numbers (here: S, si’s,

vi’s) in input. Θ(nS) is pseudopolynomial.

Remember:

polynomial — GOOD

exponential — BAD

pseudopoly — SO SO

5

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

