Lecture 21: Dynamic Programming III

Lecture Overview

- Subproblems for strings
- Parenthesization
- Edit distance (\& longest common subseq.)
- Knapsack
- Pseudopolynomial Time

Review:

* 5 easy steps to dynamic programming
(a) define subproblems
count \# subproblems
(b) guess (part of solution)
count \# choices
(c) relate subproblem solutions
compute time/subproblem
(d) recurse + memoize time $=$ time/subproblem $\cdot \#$ sub-
problems
OR build DP table bottom-up
check subproblems acyclic/topological order
(e) solve original problem: = a subproblem

OR by combining subproblem solutions $\quad \Longrightarrow$ extra time

* problems from L20 (text justification, Blackjack) are on sequences (words, cards)
* useful problems for strings/sequences x :
suffixes $x[i:]$
prefixes $x[: i]$
$\Theta(|x|) \quad \leftarrow$ cheaper \Longrightarrow use if possible
substrings $x[i: j]$
$\} \Theta\left(x^{2}\right)$

Parenthesization:

Optimal evaluation of associative expression $A[0] \cdot A[1] \cdots A[n-1]-$ e.g., multiplying rectangular matrices

Figure 1:
2. guessing $=$ outermost multiplication $(\underbrace{\cdots}_{\uparrow_{k-1}})(\underbrace{\cdots}_{\uparrow_{k}})$

$$
\Longrightarrow \# \text { choices }=O(n)
$$

1. subproblems $=$ prefixes suffixes? NO
$=$ cost of substring $A[i: j]$
\Longrightarrow \# subproblems $=\Theta\left(n^{2}\right)$
2. recurrence:

- $\mathrm{DP}[i, j]=\min (\mathrm{DP}[i, k]+\mathrm{DP}[k, j]+$ cost of multiplying $(A[i] \cdots A[k-1])$ by $(A[k] \cdots A[j-1])$ for k in range $(i+1, j))$

- $\mathrm{DP}[i, i+1]=0$
\Longrightarrow cost per subproblem $=O(j-i)=O(n)$

4. topological order: increasing substring size. Total time $=O\left(n^{3}\right)$
5. original problem $=D P[0, n]$
(\& use parent pointers to recover parens.)
NOTE: Above DP is not shortest paths in the subproblem DAG! Two dependencies \Longrightarrow not path!

Edit Distance

Used for DNA comparison, diff, CVS/SVN/..., spellchecking (typos), plagiarism detection, etc.
Given two strings $x \& y$, what is the cheapest possible sequence of character edits (insert c , delete c , replace $\mathrm{c} \rightarrow \mathrm{c}^{\prime}$) to transform x into y ?

- cost of edit depends only on characters c, c^{\prime}
- for example in DNA, $\mathrm{C} \rightarrow \mathrm{G}$ common mutation \Longrightarrow low cost
- cost of sequence $=$ sum of costs of edits
- If insert \& delete cost 1 , replace costs 0 , minimum edit distance equivalent to finding longest common subsequence. Note that a subsequence is sequential but not necessarily contiguous.
- for example H I E R O G L Y P H O L O G Y vs. M I C H A ELANGELO \Longrightarrow HELLO

Subproblems for multiple strings/sequences

- combine suffix/prefix/substring subproblems
- multiply state spaces
- still polynomial for $O(1)$ strings

Edit Distance DP

(1) subproblems: $c(i, j)=\operatorname{edit-distance}(x[i:], y[j:])$ for $0 \leq i<|x|, 0 \leq j<|y|$ $\Longrightarrow \Theta(|x| \cdot|y|)$ subproblems
(2) guess whether, to turn x into y, (3 choices):

- $x[i]$ deleted
- $y[j]$ inserted
- $x[i]$ replaced by $y[j]$
(3) recurrence: $c(i, j)=$ maximum of:
- $\operatorname{cost}($ delete $x[i])+c(i+1, j)$ if $i<|x|$,
- $\operatorname{cost}($ insert $y[j])+c(i, j+1)$ if $j<|y|$,
- $\operatorname{cost}($ replace $x[i] \rightarrow y[j])+c(i+1, j+1)$ if $i<|x| \& j<|y|$
base case: $c(|x|,|y|)=0$
$\Longrightarrow \Theta(1)$ time per subproblem
(4) topological order: DAG in 2D table:

- bottom-up OR right to left
- only need to keep last 2 rows/columns
\Longrightarrow linear space
- total time $=\Theta(|x| \cdot|y|)$
(5) original problem: $c(0,0)$

Knapsack:

Knapsack of size S you want to pack

- item i has integer size s_{i} \& real value v_{i}
- goal: choose subset of items of maximum total value subject to total size $\leq S$

First Attempt:

1. subproblem = value for suffix i: WRONG
2. guessing $=$ whether to include item $i \Longrightarrow \#$ choices $=2$
3. recurrence:

- $D P[i]=\max \left(D P[i+1], v_{i}+D P[i+1]\right.$ if $\left.\boldsymbol{s}_{i} \leqslant S ?!\right)$
- not enough information to know whether item i fits - how much space is left? GUESS!

Correct:

1. subproblem $=$ value for suffix i :
given knapsack of size X
$\Longrightarrow \quad \#$ subproblems $=O(n S)$
2. recurrence:

- $D P[i, X]=\max \left(D P[i+1, X], v_{i}+D P\left[i+1, X-s_{i}\right]\right.$ if $\left.s_{i} \leq X\right)$
- $D P[n, X]=0$
\Longrightarrow time per subproblem $=O(1)$

4. topological order: for i in $n, \ldots, 0$: for X in $0, \ldots S$
total time $=O(n S)$
5. original problem $=D P[0, S]$
(\& use parent pointers to recover subset)
AMAZING: effectively trying all possible subsets! ... but is this actually fast?

Polynomial time

Polynomial time $=$ polynomial in input size

- here $\Theta(n)$ if number S fits in a word
- $O(n \lg S)$ in general
- S is exponential in $\lg S$ (not polynomial)

Pseudopolynomial Time

Pseudopolynomial time $=$ polynomial in the problem size AND the numbers (here: S, s_{i} 's, v_{i} 's) in input. $\Theta(n S)$ is pseudopolynomial.

Remember:
polynomial - GOOD
exponential - BAD
pseudopoly - SO SO

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

