Lecture 22: Dynamic Programming IV

Lecture Overview

- 2 kinds of guessing
- Piano/Guitar Fingering
- Tetris Training
- Super Mario Bros.

Review:

* 5 easy steps to dynamic programming

(a) define subproblems	${\rm count}\ \#\ {\rm subproblems}$
(b) guess (part of solution)	count $\#$ choices
(c) relate subproblem solutions	compute time/subproblem
 (d) recurse + memoize problems OR build DP table bottom-up check subproblems acyclic/topological order 	time = time/subproblem $\cdot \#$ sub-
(e) solve original problem: = a subproblem OR by combining subproblem solutions	\implies extra time

* 2 kinds of guessing:

- (A) In (3), guess which other subproblems to use (used by every DP except Fibonacci)
- (B) In (1), create more subproblems to guess/remember more structure of solution used by knapsack DP
 - effectively report many solutions to subproblem.
 - lets parent subproblem know features of solution.

Piano/Guitar Fingering:

Piano

[Parncutt, Sloboda, Clarke, Raekallio, Desain, 1997][Hart, Bosch, Tsai 2000][Al Kasimi, Nichols, Raphael 2007] etc.

• given musical piece to play, say sequence of n (single) notes with right hand

- fingers $1, 2, \ldots, F = 5$ for humans
- metric d(f, p, g, q) of difficulty going from note p with finger f to note q with finger g

e.g., $1 < f < g \& p > q \implies$ uncomfortable stretch rule: $p \ll q \implies$ uncomfortable legato (smooth) $\implies \infty$ if f = gweak-finger rule: prefer to avoid $g \in \{4, 5\}$ $3 \rightarrow 4 \& 4 \rightarrow 3$ annoying \sim etc.

First Attempt:

- 1. subproblem = min. difficulty for suffix notes [i:]
- 2. guessing = finger f for first note [i]
- 3. recurrence: $DP[i] = \min(DP[i+1] + d(\text{note}[i], f, \text{note}[i+1], ?) \text{ for } f \cdots)$ $\rightarrow \text{ not enough information!}$

Correct DP:

- 1. <u>subproblem</u> = min difficulty for suffix notes[i :] given finger f on first note[i] $\implies n \cdot F$ subproblems
- 2. <u>guessing</u> = finger g for next note[i + 1] $\implies F$ choices
- 3. <u>recurrence</u>: $DP[i, f] = \min(DP[i+1, g] + d(\text{note}[i], f, \text{note}[i+1], g) \text{ for } g \text{ in range}(F))$ DP[n, f] = 0 $\implies \Theta(F) \text{ time/subproblem}$
- 4. topo. order: for *i* in reversed(range(*n*)): for *f* in 1, 2, ..., *F*: total time $O(nF^2)$
- 5. <u>orig. prob.</u> = min(DP[0, f] for f in 1, ..., F) (guessing very first finger)

Figure 1: DAG.

Guitar

Up to S ways to play same note! (where S is # strings)

- redefine "finger" = finger playing note + string playing note
- $\bullet \implies F \to F \cdot S$

Generalization:

Multiple notes at once e.g. chords

- input: notes[i] = list of $\leq F$ notes (can't play > 1 note with a finger)
- <u>state</u> we need to know about "past" now assignment of F fingers to $\leq F+1$ notes/null $\implies (F+1)^F$ such mappings
- (1) $n \cdot (F+1)^F$ subproblems where $(F+1)^F$ is how notes [i] is played
- (2) $(F+1)^F$ choices (how notes[i+1] played)
- (3) $n \cdot (F+1)^{2F}$ total time
 - works for 2 hands F = 10
 - just need to define appropriate d

Figure 2: Tetris.

Tetris Training:

- given sequence of n Tetris pieces & an empty board of small width w
- must choose orientation & x coordinate for each
- then must drop piece till it hits something
- full rows do not clear without the above two artificialities WE DON'T KNOW! (but: if nonempty board & w large then NP-complete)
- goal: survive i.e., stay within height h

First Attempt:

- 1. subproblem = survive in suffix i? WRONG
- 2. guessing = how to drop piece $i \implies \#$ choices = O(w)
- 3. recurrence: DP[i] = DP[i+1] ?! not enough information! What do we need to know about prefix : *i*?

Correct:

- 1. <u>subproblem</u> = survive? in suffix *i*: given initial column occupancies h_0, h_1, \dots, h_{w-1} , call it $h \implies \#$ subproblems = $O(n \cdot h^w)$
- 3. <u>recurrence</u>: $DP[i, h] = \max(DP[i, m] \text{ for valid moves } m \text{ of piece } i \text{ in } h)$ \implies time per subproblem = O(w)
- 4. <u>topo. order</u>: for *i* in reversed(range(n)): for $h \cdots$ total time = $O(nwh^w)$ (DAG as above)
- 5. <u>solution</u> = DP[0, 0]
 (& use parent pointers to recover moves)

0

Super Mario Bros

Platform Video Game

- given entire level (objects, enemies, ...) $(\leftarrow n)$
- small $w \times h$ screen
- configuration
 - screen shift $(\leftarrow n)$
 - player position & velocity $(O(1)) (\leftarrow w)$
 - object states, monster positions, etc. ($\leftarrow c^{w.\cdot h}$)
 - anything outside screen gets reset ($\leftarrow c^{w.\cdot h}$)
 - score ($\leftarrow S$)
 - time ($\leftarrow T$)
- transition function δ: (config, action) → config' nothing, ↑, ↓, ←, →, B, A press/release
- (1) <u>subproblem</u>: best score (or time) from config. C $\implies n \cdot c^{w \cdot h} \cdot S \cdot T$ subproblems
- (2) <u>guess</u>: next action to take from C $\implies O(1)$ choices
- (3) <u>recurrence</u>:

$$DP(C) = \begin{cases} C.\text{score} & \text{if on flag} \\ \infty & \text{if } C.\text{dead or } C.\text{time} = \\ \max(DP(\delta(C, A))) & \text{for } A \text{ in actions} \end{cases}$$

 $\implies O(1)$ time/subproblem

(4) topo. order: increasing time

- (5) orig. prob.: DP(start config.)
 - pseudopolynomial in S & T
 - polynomial in n
 - exponential in $w \cdot h$

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.