Lecture 22: Dynamic Programming IV

Lecture Overview

- 2 kinds of guessing
- Piano/Guitar Fingering
- Tetris Training
- Super Mario Bros.

Review:

* 5 easy steps to dynamic programming
(a) define subproblems
count \# subproblems
(b) guess (part of solution)
count \# choices
(c) relate subproblem solutions
compute time/subproblem
(d) recurse + memoize
time $=$ time/subproblem $\cdot \#$ sub-
problems
OR build DP table bottom-up
check subproblems acyclic/topological order
(e) solve original problem: = a subproblem
OR by combining subproblem solutions $\quad \Longrightarrow$ extra time
* 2 kinds of guessing:
(A) In (3), guess which other subproblems to use (used by every DP except Fibonacci)
(B) In (1), create more subproblems to guess/remember more structure of solution used by knapsack DP
- effectively report many solutions to subproblem.
- lets parent subproblem know features of solution.

Piano/Guitar Fingering:

Piano
[Parncutt, Sloboda, Clarke, Raekallio, Desain, 1997]
[Hart, Bosch, Tsai 2000]
[Al Kasimi, Nichols, Raphael 2007] etc.

- given musical piece to play, say sequence of n (single) notes with right hand
- fingers $1,2, \ldots, F=5$ for humans
- metric $d(f, p, g, q)$ of difficulty going from note p with finger f to note q with finger g
e.g., $1<f<g \& p>q \Longrightarrow$ uncomfortable
stretch rule: $p \ll q \Longrightarrow$ uncomfortable
legato (smooth) $\Longrightarrow \infty$ if $f=g$
weak-finger rule: prefer to avoid $g \in\{4,5\}$
$3 \rightarrow 4 \& 4 \rightarrow 3$ annoying \sim etc.

First Attempt:

1. subproblem $=$ min. difficulty for suffix notes $[i:]$
2. guessing $=$ finger f for first note $[i]$
3. recurrence:
$\mathrm{DP}[i]=\min (D P[i+1]+d($ note $[i], f, \operatorname{note}[i+1], ?)$ for $f \ldots)$
\rightarrow not enough information!

Correct DP:

1. subproblem $=\min$ difficulty for suffix notes $[i:]$ given finger f on first note $[i]$ $\Longrightarrow n \cdot F$ subproblems
2. guessing $=$ finger g for next note $[i+1]$
$\Longrightarrow F$ choices
3. recurrence:
$D P[i, f]=\min (D P[i+1, g]+d(\operatorname{note}[i], f, \operatorname{note}[i+1], g)$ for g in $\operatorname{range}(F))$
$\mathrm{DP}[n, f]=0$
$\Longrightarrow \Theta(F)$ time/subproblem
4. topo. order: for i in reversed $($ range $(n))$:
for f in $1,2, \ldots, F$:
total time $O\left(n F^{2}\right)$
5. orig. prob. $=\min (\operatorname{DP}[0, f]$ for f in $1, \ldots, F)$
(guessing very first finger)

Figure 1: DAG.

Guitar

Up to S ways to play same note! (where S is \# strings)

- redefine "finger" $=$ finger playing note + string playing note
- $\Longrightarrow F \rightarrow F \cdot S$

Generalization:

Multiple notes at once e.g. chords

- input: notes $[\mathrm{i}]=$ list of $\leq F$ notes (can't play >1 note with a finger)
- state we need to know about "past" now assignment of F fingers to $\leq F+1$ notes/null $\Longrightarrow(F+1)^{F}$ such mappings
(1) $n \cdot(F+1)^{F}$ subproblems where $(F+1)^{F}$ is how notes $[i]$ is played
(2) $(F+1)^{F}$ choices (how notes $[i+1]$ played)
(3) $n \cdot(F+1)^{2 F}$ total time
- works for 2 hands $F=10$
- just need to define appropriate d

Figure 2: Tetris.

Tetris Training:

- given sequence of n Tetris pieces \& an empty board of small width w
- must choose orientation \& x coordinate for each
- then must drop piece till it hits something
- full rows do not clear
without the above two artificialities WE DON'T KNOW!
(but: if nonempty board \& w large then NP-complete)
- goal: survive i.e., stay within height h

First Attempt:

1. subproblem = survive in suffix $i:$? WRONG
2. guessing $=$ how to drop piece $i \Longrightarrow$ \# choices $=O(w)$
3. recurrence: $D P[i]=D P[i+1]$?! not enough information!

What do we need to know about prefix : i ?

Correct:

- 1. subproblem $=$ survive? in suffix i :
given initial column occupancies $h_{0}, h_{1}, \cdots, h_{w-1}$, call it \boldsymbol{h}
$\Longrightarrow \quad \#$ subproblems $=O\left(n \cdot h^{w}\right)$
- 3. recurrence: $D P[i, \boldsymbol{h}]=\max (D P[i, \boldsymbol{m}]$ for valid moves \boldsymbol{m} of piece i in $\boldsymbol{h})$
\Longrightarrow time per subproblem $=O(w)$
- 4. topo. order: for i in reversed(range(n)): for $\boldsymbol{h} \cdots$
total time $=O\left(n w h^{w}\right) \quad($ DAG as above $)$
- 5. $\underline{\text { solution }}=D P[0, \mathbf{0}]$
(\& use parent pointers to recover moves)

Super Mario Bros

Platform Video Game

- given entire level (objects, enemies, \ldots) $(\leftarrow n)$
- small $w \times h$ screen
- configuration
- screen shift $(\leftarrow n)$
- player position \& velocity $(O(1))(\leftarrow w)$
- object states, monster positions, etc. $\left(\leftarrow c^{w . h}\right)$
- anything outside screen gets reset $\left(\leftarrow c^{w \cdot h}\right)$
- score $(\leftarrow S)$
- time $(\leftarrow T)$
- transition function $\delta:($ config, action) \rightarrow config' nothing, $\uparrow, \downarrow, \leftarrow, \rightarrow$, B, A press/release
(1) subproblem: best score (or time) from config. C
$\Longrightarrow n \cdot c^{w \cdot h} \cdot S \cdot T$ subproblems
(2) guess: next action to take from C
$\Longrightarrow O(1)$ choices
(3) recurrence:

$$
D P(C)= \begin{cases}C . \text { score } & \text { if on flag } \\ \infty & \text { if } C . \text { dead or } C . \text { time }=0 \\ \max (D P(\delta(C, A))) & \text { for } A \text { in actions }\end{cases}
$$

$\Longrightarrow O(1)$ time/subproblem
(4) topo. order: increasing time
(5) orig. prob.: $\mathrm{DP}($ start config.)

- pseudopolynomial in $S \& T$
- polynomial in n
- exponential in $w \cdot h$

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

