Lecture 17: Shortest Paths III: Bellman-Ford

Lecture Overview

- Review: Notation
- Generic S.P. Algorithm
- Bellman-Ford Algorithm
- Analysis
- Correctness

Recall:

$$
\begin{aligned}
\text { path } p= & <v_{0}, v_{1}, \ldots, v_{k}> \\
& \left(v_{1}, v_{i+1}\right) \in E \quad 0 \leq i<k \\
w(p)= & \sum_{i=0}^{k-1} w\left(v_{i}, v_{i+1}\right)
\end{aligned}
$$

Shortest path weight from u to v is $\delta(u, v) . \delta(u, v)$ is ∞ if v is unreachable from u, undefined if there is a negative cycle on some path from u to v.

Figure 1: Negative Cycle.

Generic S.P. Algorithm

$$
\left.\begin{array}{ll}
\text { Initialize: } & \text { for } v \in V: \begin{array}{l}
d[v] \\
\Pi[v] \\
\\
\text { Main: }
\end{array} \\
& d[S] \leftarrow 0 \\
& \text { repeat } \\
& \text { select edge }(u, v) \quad[\text { somehow }]
\end{array}\right\}
$$

Complexity:

Termination: Algorithm will continually relax edges when there are negative cycles present.

Figure 2: Algorithm may not terminate due to negative cycles.
Complexity could be exponential time with poor choice of edges.

Figure 3: Algorithm could take exponential time. The outgoing edges from v_{0} and v_{1} have weight 4 , the outgoing edges from v_{2} and v_{3} have weight 2 , the outgoing edges from v_{4} and v_{5} have weight 1 .

5-Minute 6.006

Figure 4 is what I want you to remember from 6.006 five years after you graduate!

Bellman-Ford(G,W,s)

$$
\begin{aligned}
& \text { Initialize }() \\
& \text { for } i=1 \text { to }|V|-1 \\
& \quad \text { for each edge }(u, v) \in E \text { : } \\
& \quad \operatorname{Relax}(u, v) \\
& \text { for each edge }(u, v) \in E \\
& \text { do if } d[v]>d[u]+w(u, v) \\
& \quad \text { then report a negative-weight cycle exists }
\end{aligned}
$$

At the end, $d[v]=\delta(s, v)$, if no negative-weight cycles.

Theorem:

If $G=(V, E)$ contains no negative weight cycles, then after Bellman-Ford executes $d[v]=\delta(s, v)$ for all $v \in V$.

Divide \& Explode

Figure 4: Exponential vs. Polynomial.

Proof:

Let $v \in V$ be any vertex. Consider path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ from $v_{0}=s$ to $v_{k}=v$ that is a shortest path with minimum number of edges. No negative weight cycles $\Longrightarrow p$ is simple $\Longrightarrow k \leq|V|-1$.

Consider Figure 6. Initially $d\left[v_{0}\right]=0=\delta\left(s, v_{0}\right)$ and is unchanged since no negative cycles.
After 1 pass through E, we have $d\left[v_{1}\right]=\delta\left(s, v_{1}\right)$, because we will relax the edge $\left(v_{0}, v_{1}\right)$ in the pass, and we can't find a shorter path than this shortest path. (Note that we are invoking optimal substructure and the safeness lemma from Lecture 16 here.)
After 2 passes through E, we have $d\left[v_{2}\right]=\delta\left(s, v_{2}\right)$, because in the second pass we will relax the edge $\left(v_{1}, v_{2}\right)$.
After i passes through E, we have $d\left[v_{i}\right]=\delta\left(s, v_{i}\right)$.
After $k \leq|V|-1$ passes through E, we have $d\left[v_{k}\right]=d[v]=\delta(s, v)$.

Corollary

If a value $d[v]$ fails to converge after $|V|-1$ passes, there exists a negative-weight cycle reachable from s.

Proof:

After $|V|-1$ passes, if we find an edge that can be relaxed, it means that the current shortest path from s to some vertex is not simple and vertices are repeated. Since this cyclic path has less weight than any simple path the cycle has to be a negative-weight cycle.

End of pass 1

End of pass 2 (and 3 and 4)

Figure 5: The numbers in circles indicate the order in which the δ values are computed.

Figure 6: Illustration for proof.

Longest Simple Path and Shortest Simple Path

Finding the longest simple path in a graph with non-negative edge weights is an NPhard problem, for which no known polynomial-time algorithm exists. Suppose one simply negates each of the edge weights and runs Bellman-Ford to compute shortest paths. Bellman-Ford will not necessarily compute the longest paths in the original graph, since there might be a negative-weight cycle reachable from the source, and the algorithm will abort.

Similarly, if we have a graph with negative cycles, and we wish to find the longest simple path from the source s to a vertex v, we cannot use Bellman-Ford. The shortest simple path problem is also NP-hard.

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

