Lecture 17: Shortest Paths III: Bellman-Ford

Lecture Overview

- Review: Notation
- Generic S.P. Algorithm
- Bellman-Ford Algorithm
 - Analysis
 - Correctness

Recall:

path
$$p = \langle v_0, v_1, \dots, v_k \rangle$$

 $(v_1, v_{i+1}) \in E \quad 0 \le i < k$
 $w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$

Shortest path weight from u to v is $\delta(u, v)$. $\delta(u, v)$ is ∞ if v is unreachable from u, undefined if there is a negative cycle on some path from u to v.

Figure 1: Negative Cycle.

Generic S.P. Algorithm

Initialize:	$\begin{array}{rcl} \text{for } v \ \in \ V : & \displaystyle \frac{d \left[v \right] & \leftarrow & \infty \\ \Pi \left[v \right] & \leftarrow & NIL \end{array}$
Main:	$d[S] \leftarrow 0$ repeat
	select edge (u, v) [somehow] $\int \text{if } d[v] > d[u] + w(u, v)$:
"Relax" edge (u, v)	$\begin{bmatrix} u[v] > u[u] + w(u, v) \\ d[v] \leftarrow d[u] + w(u, v) \\ \pi[v] \leftarrow u \end{bmatrix}$

until you can't relax any more edges or you're tired or ...

Complexity:

Termination: Algorithm will continually relax edges when there are negative cycles present.

Figure 2: Algorithm may not terminate due to negative cycles.

Complexity could be exponential time with poor choice of edges.

Figure 3: Algorithm could take exponential time. The outgoing edges from v_0 and v_1 have weight 4, the outgoing edges from v_2 and v_3 have weight 2, the outgoing edges from v_4 and v_5 have weight 1.

5-Minute 6.006

Figure 4 is what I want you to remember from 6.006 five years after you graduate!

Bellman-Ford(G,W,s)

```
Initialize ()
for i = 1 to |V| - 1
for each edge (u, v) \in E:
Relax(u, v)
for each edge (u, v) \in E
do if d[v] > d[u] + w(u, v)
then report a negative-weight cycle exists
```

At the end, $d[v] = \delta(s, v)$, if no negative-weight cycles.

Theorem:

If G = (V, E) contains no negative weight cycles, then after Bellman-Ford executes $d[v] = \delta(s, v)$ for all $v \in V$.

Figure 4: Exponential vs. Polynomial.

Proof:

Let $v \in V$ be any vertex. Consider path $p = \langle v_0, v_1, \ldots, v_k \rangle$ from $v_0 = s$ to $v_k = v$ that is a shortest path with minimum number of edges. No negative weight cycles $\implies p$ is simple $\implies k \leq |V| - 1$.

Consider Figure 6. Initially $d[v_0] = 0 = \delta(s, v_0)$ and is unchanged since no negative cycles.

After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$, because we will relax the edge (v_0, v_1) in the pass, and we can't find a shorter path than this shortest path. (Note that we are invoking optimal substructure and the safeness lemma from Lecture 16 here.)

After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$, because in the second pass we will relax the edge (v_1, v_2) .

After *i* passes through *E*, we have $d[v_i] = \delta(s, v_i)$. After $k \leq |V| - 1$ passes through *E*, we have $d[v_k] = d[v] = \delta(s, v)$.

Corollary

If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle reachable from s.

Proof:

After |V| - 1 passes, if we find an edge that can be relaxed, it means that the current shortest path from s to some vertex is not simple and vertices are repeated. Since this cyclic path has less weight than any simple path the cycle has to be a negative-weight cycle.

Figure 5: The numbers in circles indicate the order in which the δ values are computed.

Figure 6: Illustration for proof.

Longest Simple Path and Shortest Simple Path

Finding the longest simple path in a graph with non-negative edge weights is an NPhard problem, for which no known polynomial-time algorithm exists. Suppose one simply negates each of the edge weights and runs Bellman-Ford to compute shortest paths. Bellman-Ford will not necessarily compute the longest paths in the original graph, since there might be a negative-weight cycle reachable from the source, and the algorithm will abort.

Similarly, if we have a graph with negative cycles, and we wish to find the longest *simple* path from the source s to a vertex v, we cannot use Bellman-Ford. The shortest simple path problem is also NP-hard.

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.