
Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

Lecture 16: Shortest Paths II - Dijkstra

Lecture Overview

• Review

• Shortest paths in DAGs

• Shortest paths in graphs without negative edges

• Dijkstra’s Algorithm

Readings

CLRS, Sections 24.2-24.3

Review

d[v] is the length of the current shortest path from starting vertex s. Through a

process of relaxation, d[v] should eventually become δ(s, v), which is the length of the

shortest pathfrom s to v. Π[v] is the predecessor of v in the shortest path from s to

v.

Basic operation in shortest path computation is the relaxation operation

RELAX(u, v, w)

if d[v] > d[u] + w(u, v)

then d[v]← d[u] + w(u, v)

Π[v]← u

Relaxation is Safe

Lemma: The relaxation algorithm maintains the invariant that d[v] ≥ δ(s, v) for all

v ∈ V .

Proof: By induction on the number of steps.

Consider RELAX(u, v, w). By induction d[u] ≥ δ(s, u). By the triangle in-

equality, δ(s, v) ≤ δ(s, u) + δ(u, v). This means that δ(s, v) ≤ d[u] + w(u, v), since

d[u] ≥ δ(s, u) and w(u, v) ≥ δ(u, v). So setting d[v] = d[u] + w(u, v) is safe. �

1

Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

DAGs:

Can’t have negative cycles because there are no cycles!

1. Topologically sort the DAG. Path from u to v implies that u is before v in the

linear ordering.

2. One pass over vertices in topologically sorted order relaxing each edge that

leaves each vertex.

Θ(V + E) time

Example:

r s t x y z

∞ 0 ∞ ∞ ∞ ∞

3

5 2 7 -1

6

4

1

-2

2

Figure 1: Shortest Path using Topological Sort.

Vertices sorted left to right in topological order

Process r: stays ∞. All vertices to the left of s will be ∞ by definition

Process s: t :∞→ 2 x :∞→ 6 (see top of Figure 2)

2

Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

r s t x y z

∞ 0 2 6 ∞ ∞

3

5 2 7 -1

6

4

1

-2

2

r s t x y z

∞ 0 2 6 5 3

3

5 2 7 -1

6

4

1

-2

2

process t, x, y

Figure 2: Preview of Dynamic Programming

DIJKSTRA Demo

3

Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

B

C

A

D

E
5

19

11

7

15

4

13

A C E B D
 7 12 18 22

D B E C A
 4 13 15 22

E C A D B
 5 12 13 16

Figure 3: Dijkstra Demonstration with Balls and String.

Dijkstra’s Algorithm

For each edge (u, v) ε E, assume w(u, v) ≥ 0, maintain a set S of vertices whose

final shortest path weights have been determined. Repeatedly select u ε V − S with

minimum shortest path estimate, add u to S, relax all edges out of u.

Pseudo-code

Dijkstra (G,W, s) //uses priority queue Q

Initialize (G, s)

S ← φ

Q← V [G] //Insert into Q

while Q = φ

do u← EXTRACT-MIN(Q) //deletes u from Q

S = S ∪ {u}
for each vertex v ε Adj[u]

do RELAX (u, v, w) ← this is an implicit DECREASE KEY operation

6

4

Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

Example

B

C
∞

A
0

D

E

2

2

10

1

3

84 9
7

∞

∞ ∞

S = { } { A B C D E } = Q

S = { A } 0 ∞ ∞ ∞ ∞

S = { A, C } 0 10 3 ∞ ∞ after relaxing
 edges from A
S = { A, C } 0 7 3 11 5 after relaxing
 edges from C
S = { A, C, E } 0 7 3 11 5

S = { A, C , E, B} 0 7 3 9 5 after relaxing
 edges from B

Figure 4: Dijkstra Execution

Strategy: Dijkstra is a greedy algorithm: choose closest vertex in V − S to add to

set S.

Correctness: We know relaxation is safe. The key observation is that each time a

vertex u is added to set S, we have d[u] = δ(s, u).

5

Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

Dijkstra Complexity

Θ(v) inserts into priority queue

Θ(v) EXTRACT MIN operations

Θ(E) DECREASE KEY operations

Array impl:

Θ(v) time for extra min

Θ(1) for decrease key

Total: Θ(V.V + E.1) = Θ(V 2 + E) = Θ(V 2)

Binary min-heap:

Θ(lg V) for extract min

Θ(lg V) for decrease key

Total: Θ(V lg V + E lg V)

Fibonacci heap (not covered in 6.006):

Θ(lg V) for extract min

Θ(1) for decrease key

amortized cost

Total: Θ(V lg V + E)

6

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

