Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

Lecture 16: Shortest Paths II - Dijkstra

Lecture Overview

e Review
e Shortest paths in DAGs
e Shortest paths in graphs without negative edges

e Dijkstra’s Algorithm

Readings
CLRS, Sections 24.2-24.3

Review

d[v] is the length of the current shortest path from starting vertex s. Through a
process of relaxation, d[v] should eventually become (s, v), which is the length of the
shortest pathfrom s to v. II[v] is the predecessor of v in the shortest path from s to
v.

Basic operation in shortest path computation is the relazation operation

RELAX (u, v, w)
if dv] > d[u] + w(u,v)
then d[v] « d[u] + w(u,v)
[v] < u

Relaxation is Safe

Lemma: The relaxation algorithm maintains the invariant that d[v] > d(s, v) for all
velV.
Proof: By induction on the number of steps.

Consider RELAX (u,v,w). By induction d[u] > d(s,u). By the triangle in-
equality, d(s,v) < d(s,u) + d(u,v). This means that d(s,v) < du] + w(u,v), since
dlu] > 6(s,u) and w(u,v) > d(u,v). So setting d[v] = d[u] + w(u,v) is safe. O



Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

DAGs:

Can’t have negative cycles because there are no cycles!

1. Topologically sort the DAG. Path from u to v implies that u is before v in the
linear ordering.

2. One pass over vertices in topologically sorted order relaxing each edge that
leaves each vertex.

O(V + E) time

Example:

Figure 1: Shortest Path using Topological Sort.

Vertices sorted left to right in topological order
Process r: stays oo. All vertices to the left of s will be co by definition

Process s: t: 00 — 2 x: 00 — 6 (see top of Figure 2)



Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

Figure 2: Preview of Dynamic Programming

DIJKSTRA Demo



Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

ACEZB D DB E
7 1218 22 4 1315 22

Figure 3: Dijkstra Demonstration with Balls and String.

Dijkstra’s Algorithm

For each edge (u,v) € E, assume w(u,v) > 0, maintain a set S of vertices whose
final shortest path weights have been determined. Repeatedly select u ¢ V' — S with
minimum shortest path estimate, add u to S, relax all edges out of w.

Pseudo-code

Dijkstra (G, W, s) //uses priority queue Q
Initialize (G, s)
S— ¢
Q — VI[G] //Insert into @
while ) # ¢
do u «+— EXTRACT-MIN(Q) //deletes u from Q
S =SuU{u}
for each vertex v e Adj[ul
do RELAX (u,v,w) <« this is an implicit DECREASE_KEY operation



Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

Example
0
S={1} Q
S={A}
S={AC} after relaxing

edges from A

S={AC} 0 73 N @ <« afterrelaxing
edges from C

s={AGE} 0(@)3 11 5

S={AC,EB} 07 3 9 5 4 afterrelaxing
edges from B

Figure 4: Dijkstra Execution

Strategy: Dijkstra is a greedy algorithm: choose closest vertex in V' — S to add to
set S.

Correctness: We know relaxation is safe. The key observation is that each time a
vertex u is added to set S, we have d[u] = (s, u).



Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011

Dijkstra Complexity

©(v) inserts into priority queue
©(v) EXTRACT_MIN operations
O(F) DECREASE_KEY operations

Array impl:

O(v) time for extra min
©(1) for decrease key
Total: O(V.V + E.1) =0(V2+ E) = 0(V?)

Binary min-heap:

O(lgV) for extract min
O(lg V) for decrease key
Total: O(VIgV + ElgV)

Fibonacci heap (not covered in 6.006):

O(lgV) for extract min
©(1) for decrease key
amortized cost

Total: ©(VigV + E)



MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



