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Lecture 16: Shortest Paths II - Dijkstra

Lecture Overview

• Review

• Shortest paths in DAGs

• Shortest paths in graphs without negative edges

• Dijkstra’s Algorithm

Readings

CLRS, Sections 24.2-24.3

Review

d[v] is the length of the current shortest path from starting vertex s. Through a

process of relaxation, d[v] should eventually become δ(s, v), which is the length of the

shortest pathfrom s to v. Π[v] is the predecessor of v in the shortest path from s to

v.

Basic operation in shortest path computation is the relaxation operation

RELAX(u, v, w)

if d[v] > d[u] + w(u, v)

then d[v]← d[u] + w(u, v)

Π[v]← u

Relaxation is Safe

Lemma: The relaxation algorithm maintains the invariant that d[v] ≥ δ(s, v) for all

v ∈ V .

Proof: By induction on the number of steps.

Consider RELAX(u, v, w). By induction d[u] ≥ δ(s, u). By the triangle in-

equality, δ(s, v) ≤ δ(s, u) + δ(u, v). This means that δ(s, v) ≤ d[u] + w(u, v), since

d[u] ≥ δ(s, u) and w(u, v) ≥ δ(u, v). So setting d[v] = d[u] + w(u, v) is safe. �
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DAGs:

Can’t have negative cycles because there are no cycles!

1. Topologically sort the DAG. Path from u to v implies that u is before v in the

linear ordering.

2. One pass over vertices in topologically sorted order relaxing each edge that

leaves each vertex.

Θ(V + E) time

Example:

r s t x y z

∞ 0 ∞ ∞ ∞ ∞

3

5 2 7 -1

6

4

1

-2

2

Figure 1: Shortest Path using Topological Sort.

Vertices sorted left to right in topological order

Process r: stays ∞. All vertices to the left of s will be ∞ by definition

Process s: t :∞→ 2 x :∞→ 6 (see top of Figure 2)
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r s t x y z

∞ 0 2 6 ∞ ∞

3

5 2 7 -1

6

4

1

-2

2

r s t x y z

∞ 0 2 6 5 3

3

5 2 7 -1

6

4

1

-2

2

process t, x, y

Figure 2: Preview of Dynamic Programming

DIJKSTRA Demo

3



Lecture 16 Shortest Paths II: Dijkstra 6.006 Fall 2011
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A   C    E    B     D
      7   12  18   22 

D   B    E    C     A
      4   13  15   22 

E   C    A    D     B
      5   12  13   16 

Figure 3: Dijkstra Demonstration with Balls and String.

Dijkstra’s Algorithm

For each edge (u, v) ε E, assume w(u, v) ≥ 0, maintain a set S of vertices whose

final shortest path weights have been determined. Repeatedly select u ε V − S with

minimum shortest path estimate, add u to S, relax all edges out of u.

Pseudo-code

Dijkstra (G,W, s) //uses priority queue Q

Initialize (G, s)

S ← φ

Q← V [G] //Insert into Q

while Q = φ

do u← EXTRACT-MIN(Q) //deletes u from Q

S = S ∪ {u}
for each vertex v ε Adj[u]

do RELAX (u, v, w) ← this is an implicit DECREASE KEY operation
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Example

B

C
∞

A
0

D

E

2

2

10

1

3

84 9
7

∞

∞ ∞

S = {   }     {  A   B    C     D    E  }   =   Q

S = { A }        0   ∞   ∞   ∞   ∞     

S = { A, C }        0   10   3    ∞    ∞       after relaxing 
      edges from A
S = { A, C }        0    7   3     11    5       after relaxing 
      edges from C 
S = { A, C, E }        0    7    3    11    5       

S = { A, C , E, B}       0   7   3      9     5       after relaxing 
      edges from B 

Figure 4: Dijkstra Execution

Strategy: Dijkstra is a greedy algorithm: choose closest vertex in V − S to add to

set S.

Correctness: We know relaxation is safe. The key observation is that each time a

vertex u is added to set S, we have d[u] = δ(s, u).
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Dijkstra Complexity

Θ(v) inserts into priority queue

Θ(v) EXTRACT MIN operations

Θ(E) DECREASE KEY operations

Array impl:

Θ(v) time for extra min

Θ(1) for decrease key

Total: Θ(V.V + E.1) = Θ(V 2 + E) = Θ(V 2)

Binary min-heap:

Θ(lg V ) for extract min

Θ(lg V ) for decrease key

Total: Θ(V lg V + E lg V )

Fibonacci heap (not covered in 6.006):

Θ(lg V ) for extract min

Θ(1) for decrease key

amortized cost

Total: Θ(V lg V + E)
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