Lecture 2 6.006 Fall 2011

Lecture 2: Models of Computation

Lecture Overview

e What is an algorithm? What is time?
e Random access machine

e Pointer machine

e Python model

e Document distance: problem & algorithms

History

Al-Khwarizmi “al-kha-raz-mi” (c. 780-850)

e “father of algebra” with his book “The Compendious Book on Calculation by Com-
pletion & Balancing”

e linear & quadratic equation solving: some of the first algorithms

What is an Algorithm?

e Mathematical abstraction of computer program

e Computational procedure to solve a problem

analog
Q pror;r:;gr]:r:?ng T lgorthm built on
language <—»| pseudocode top of
Q computer > corgwopduila(t)ifon 2

Figure 1: Algorithm

Model of computation specifies

e what operations an algorithm is allowed
e cost (time, space, ...) of each operation

e cost of algorithm = sum of operation costs

http://en.wikipedia.org/wiki/Al-Khwarizmi

Lecture 2 6.006 Fall 2011

Random Access Machine (RAM)

o A W N

Random Access Memory (RAM) modeled by a big array

O(1) registers (each 1 word)
e In O(1) time, can

— load word @ r; into register r;
— compute (+, —, *, /,&, |, ") on registers

— store register r; into memory @ r;

What'’s a word? w > lg (memory size) bits

— assume basic objects (e.g., int) fit in word

— unit 4 in the course deals with big numbers

realistic and powerful — implement abstractions

Pointer Machine
e dynamically allocated objects (namedtuple)
e object has O(1) fields
e field = word (e.g., int) or pointer to object/null (a.k.a. reference)

e weaker than (can be implemented on) RAM

Lecture 2 6.006 Fall 2011

val

prev

next

val

prev

next

Python Model

Python lets you use either mode of thinking

1. “list” is actually an array — RAM
L[i] = L[j] +5 — O(1) time
2. object with O(1) attributes (including references) — pointer machine
x = z.next — O(1) time
Python has many other operations. To determine their cost, imagine implementation in
terms of (1) or (2):
1. list
(a) L.append(x) — 0(1) time
obvious if you think of infinite array

but how would you have > 1 on RAM?
via table doubling [Lecture 9]

b)) L=IL1+L2 =L=][]—060)
—_—
(0(1+|L1|+|L2]) time)
for x in L1: 0(|L1])
L.append(x) — 0(1)
for x in L2: 0(|L2])
L.append(x) — 6(1)

Lecture 2 6.006 Fall 2011

(¢) Ll.extend(L2) = for z in L2: 6(1 + |L2|) time
=L1+ =12 Ll.append(x) — 0(1)

(d) L2="L1fi:jl=1L2=] 0(j —i+1)=O(L|
for k in range(i, 5):
L2.append(L1[i]) — 0(1)

(e) b=xzin L = foryin L: f(index of x) = 0(|L])
& L.index(x) ife==1y: 0(1)
& L.find(x) b = True;
break
else
b= False)

(f) len(L) — 0(1) time - list stores its length in a field

(g) L.sort() — O(|L|log|L]|) - via comparison sort [Lecture 3, 4 & 7)]
2. tuple, str: similar, (think of as immutable lists)

3. dict: via hashing [Unit 3 = Lectures 8-10]

Dikey] = val (1) & 1
key in D (1) time w.h.p.

4. set: similar (think of as dict without vals)
5. heapq: heappush & heappop - via heaps [Lecture 4] — 0(log(n)) time

6. long: via Karatsuba algorithm [Lecture 11]
x4y — O(|z| + |y|) time where |y| reflects # words
zxy — O((Jz] +[y))**®) =~ O((|z| + [y)"**) time

Document Distance Problem — compute d(D;, D>)

The document distance problem has applications in finding similar documents, detecting
duplicates (Wikipedia mirrors and Google) and plagiarism, and also in web search (Dy =

query).
Some Definitions:

e Word = sequence of alphanumeric characters
e Document = sequence of words (ignore space, punctuation, etc.)

The idea is to define distance in terms of shared words. Think of document D as a vector:

D]w] = # occurrences of word W. For example:

Lecture 2 6.006 Fall 2011

> the

cat

Figure 2: D1 = “the cat”, D2 = “the dog”

As a first attempt, define document distance as

d(Dy,Dy) = Dy- Dy = > Dy[W]- Da[W]
w

The problem is that this is not scale invariant. This means that long documents with 99%
same words seem farther than short documents with 10% same words.
This can be fixed by normalizing by the number of words:

Dy - Dy
d"(Dy,Dy) = ———=_
(D1 D2) = 15 1715,]

where | D;| is the number of words in document i. The geometric (rescaling) interpretation
of this would be that:
d(D1, Do) = arccos(d” (D1, D5))

or the document distance is the angle between the vectors. An angle of 0° means the two
documents are identical whereas an angle of 90° means there are no common words. This
approach was introduced by [Salton, Wong, Yang 1975].

Document Distance Algorithm
1. split each document into words
2. count word frequencies (document vectors)

3. compute dot product (& divide)

Lecture 2 6.006 Fall 2011

(1) re.findall (r“ w+", doc) — what cost?
in general re can be exponential time
— for char in doc: ©(|doc])
if not alphanumeric
add previous word o(1)
(if any) to list
start new word

(2) sort word list < O(klogk - |word|) where k is #words
for word in list: O(>_ |lword|) = O(|doc|)
if same as last word: <« O(Jword|)
increment counter O(1)
else:
add last word and count to list

reset counter to 0

(3) for word, countl in docl: <+ ©(k;) O(ky - ko)
if word, count2 in doc2: <« ©O(ky)
total += countl * count2 O(1)

(3)’ start at first word of each list) O(>_ |word|) = O(|doc|)
if words equal: <+ O(word|)
total += countl * count2
if wordl < word2: < O(|word])
advance list1
else:
advance list2

repeat either until list done

Dictionary Approach
(2) count = {}

for word in doc:
if word in count: < O(jword|)+O(1) w.h.p
count[word] += 1
else O(1)
count[word] = 1

O(|doc|) w.h.p.

(3)" as above — O(|doc;|) w.h.p.

Lecture 2

6.006 Fall 2011

Code (lecture2_code.zip & _data.zip on website)

t2.bobsey.txt 268,778 chars/49,785 words/3354 uniq
t3.lewis.txt 1,031,470 chars/182,355 words/8534 uniq
seconds on Pentium 4, 2.8 GHz, C-Python 2.62, Linux 2.6.26

e docdistl: 228.1 — (1), (2), (3) (with extra sorting)
words = words + words_on_line

docdist2: 164.7 — words += words_on_line

docdist3: 123.1 — (3)’ ... with insertion sort

docdist4: 71.7 — (2)’ but still sort to use (3)’

docdisth: 18.3 — split words via string.translate

docdist6: 11.5 — merge sort (vs. insertion)

docdist7: 1.8 — (3) (full dictionary)

docdist8: 0.2 — whole doc, not line by line

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

