Lecture 15: Shortest Paths I: Intro

Lecture Overview

- Weighted Graphs
- General Approach
- Negative Edges
- Optimal Substructure

Readings

CLRS, Sections 24 (Intro)

Motivation:

Shortest way to drive from A to B Google maps "get directions"
Formulation: Problem on a weighted graph $G(V, E) \quad W: E \rightarrow \Re$
Two algorithms: Dijkstra $O(V \lg V+E)$ assumes non-negative edge weights Bellman Ford $O(V E)$ is a general algorithm

Application

- Find shortest path from CalTech to MIT
- See "CalTech Cannon Hack" photos web.mit.edu
- See Google Maps from CalTech to MIT
- Model as a weighted graph $G(V, E), W: E \rightarrow \Re$
$-V=$ vertices (street intersections)
- $E=$ edges (street, roads); directed edges (one way roads)
- $W(U, V)=$ weight of edge from u to v (distance, toll)
path $p=<v_{0}, v_{1}, \ldots v_{k}>$ $\left(v_{i}, v_{i+1}\right) \in E \quad$ for $\quad 0 \leq i<k$

$$
w(p)=\sum_{i=0}^{k-1} w\left(v_{i}, v_{i+1}\right)
$$

Weighted Graphs:

Notation:

$v_{0} \xrightarrow{p} v_{k}$ means p is a path from v_{0} to $v_{k} .\left(v_{0}\right)$ is a path from v_{0} to v_{0} of weight 0.

Definition:

Shortest path weight from u to v as

$$
\delta(u, v)=\left\{\begin{array}{llll}
\min \{w(p): & & p \\
\infty & u & v
\end{array}\right\} \begin{aligned}
& \text { if } \exists \text { any such path } \\
& \text { otherwise }(v \text { unreachable from } u)
\end{aligned}
$$

Single Source Shortest Paths:

Given $G=(V, E), w$ and a source vertex S, find $\delta(S, V)$ [and the best path] from S to each $v \in V$.

Data structures:

$$
\begin{aligned}
d[v] & =\text { value inside circle } \\
& =\left\{\begin{array}{cc}
0 & \text { if } v=s \\
\infty & \text { otherwise }
\end{array}\right\} \Longleftarrow \text { initially } \\
& =\delta(s, v) \Longleftarrow \text { at end } \\
d[v] & \geq \delta(s, v) \text { at all times }
\end{aligned}
$$

$d[v]$ decreases as we find better paths to v, see Figure 1. $\Pi[v]=$ predecessor on best path to $v, \Pi[s]=$ NIL

Example:

Figure 1: Shortest Path Example: Bold edges give predecessor Π relationships

Negative-Weight Edges:

- Natural in some applications (e.g., logarithms used for weights)
- Some algorithms disallow negative weight edges (e.g., Dijkstra)
- If you have negative weight edges, you might also have negative weight cycles \Longrightarrow may make certain shortest paths undefined!

Example:

See Figure 2

$$
B \rightarrow D \rightarrow C \rightarrow B \text { (origin) has weight }-6+2+3=-1<0 \text { ! }
$$

Shortest path $S \longrightarrow C$ (or B, D, E) is undefined. Can go around $B \rightarrow D \rightarrow C$ as

Figure 2: Negative-weight Edges.
many times as you like
Shortest path $S \longrightarrow A$ is defined and has weight 2
If negative weight edges are present, s.p. algorithm should find negative weight cycles (e.g., Bellman Ford)

General structure of S.P. Algorithms (no negative cycles)

$$
\begin{aligned}
& \text { Initialize: } \quad \text { for } v \in V: \begin{array}{l}
d[v] \\
\Pi[v]
\end{array} \leftarrow \text { NIL } \\
& d[S] \leftarrow 0 \\
& \text { Main: repeat } \\
& \text { select edge }(u, v) \text { [somehow] } \\
& \text { "Relax" edge }(u, v) \quad\left[\begin{array}{rl}
\text { if } d[v] & >d[u]+w(u, v): \\
d[v] & \leftarrow d[u]+w(u, v) \\
\pi[v] & \leftarrow u
\end{array}\right. \\
& \text { until all edges have } d[v] \leq d[u]+w(u, v)
\end{aligned}
$$

Complexity:

Termination? (needs to be shown even without negative cycles) Could be exponential time with poor choice of edges.

Figure 3: Running Generic Algorithm. The outgoing edges from v_{0} and v_{1} have weight 4 , the outgoing edges from v_{2} and v_{3} have weight 2 , the outgoing edges from v_{4} and v_{5} have weight 1.

In a generalized example based on Figure 3, we have n nodes, and the weights of edges in the first 3 -tuple of nodes are $2^{\frac{n}{2}}$. The weights on the second set are $2^{\frac{n}{2}-1}$, and so on. A pathological selection of edges will result in the initial value of $d\left(v_{n-1}\right)$ to be $2 \times\left(2^{\frac{n}{2}}+2^{\frac{n}{2}-1}+\cdots+4+2+1\right)$. In this ordering, we may then relax the edge of weight 1 that connects v_{n-3} to v_{n-1}. This will reduce $d\left(v_{n-1}\right)$ by 1 . After we relax the edge between v_{n-5} and v_{n-3} of weight $2, d\left(v_{n-2}\right)$ reduces by 2 . We then might relax the edges $\left(v_{n-3}, v_{n-2}\right)$ and $\left(v_{n-2}, v_{n-1}\right)$ to reduce $d\left(v_{n-1}\right)$ by 1 . Then, we relax the edge from v_{n-3} to v_{n-1} again. In this manner, we might reduce $d\left(v_{n-1}\right)$ by 1 at each relaxation all the way down to $2^{\frac{n}{2}}+2^{\frac{n}{2}-1}+\cdots+4+2+1$. This will take $O\left(2^{\frac{n}{2}}\right)$ time.

Optimal Substructure:

Theorem: Subpaths of shortest paths are shortest paths
Let $p=<v_{0}, v_{1}, \ldots v_{k}>$ be a shortest path
Let $p_{i j}=<v_{i}, v_{i+1}, \ldots v_{j}>\quad 0 \leq i \leq j \leq k$

Then $p_{i j}$ is a shortest path.
Proof: $p=\begin{array}{llllll} \\ v_{0} & p_{0, i} \\ \rightarrow & v_{i} & p_{i j} & & p_{j k} & \\ & & v_{j} & \rightarrow & v_{k} \\ & & \\ & p_{i j}^{\prime}\end{array}$
If $p_{i j}^{\prime}$ is shorter than $p_{i j}$, cut out $p_{i j}$ and replace with $p_{i j}^{\prime}$; result is shorter than p . Contradiction.

Triangle Inequality:

Theorem: For all $u, v, x \in X$, we have

$$
\delta(u, v) \leq \delta(u, x)+\delta(x, v)
$$

Proof:

Figure 4: Triangle inequality

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

