
Lecture 6 Balanced Binary Search Trees 6.006 Fall 2011

Lecture 6: Balanced Binary Search Trees

Lecture Overview

• The importance of being balanced

• AVL trees

– Definition and balance

– Rotations

– Insert

• Other balanced trees

• Data structures in general

• Lower bounds

Recall: Binary Search Trees (BSTs)

• rooted binary tree

• each node has

– key

– left pointer

– right pointer

– parent pointer

See Fig. 1

65

41

20

11 5029

26

3

2

1

1

0

0

0

Figure 1: Heights of nodes in a BST

1

Lecture 6 Balanced Binary Search Trees 6.006 Fall 2011

x

≤x ≥x

Figure 2: BST property

• BST property (see Fig. 2).

• height of node = length (# edges) of longest downward path to a leaf (see CLRS B.5

for details).

The Importance of Being Balanced:

• BSTs support insert, delete, min, max, next-larger, next-smaller, etc. in O(h) time,

where h = height of tree (= height of root).

• h is between lg n and n: Fig. 3.

vs.

Perfectly Balanced Path

Figure 3: Balancing BSTs

• balanced BST maintains h = O(lg n) ⇒ all operations run in O(lg n) time.

2

Lecture 6 Balanced Binary Search Trees 6.006 Fall 2011

AVL Trees: Adel’son-Vel’skii & Landis 1962

For every node, require heights of left & right children to differ by at most ±1.

• treat nil tree as height -1

• each node stores its height (DATA STRUCTURE AUGMENTATION) (like subtree

size) (alternatively, can just store difference in heights)

This is illustrated in Fig. 4

kk-1

Figure 4: AVL Tree Concept

Balance:

Worst when every node differs by 1 — let Nh = (min.) # nodes in height-h AVL tree

=⇒ Nh = Nh−1 +Nh−2 + 1

> 2Nh−2

=⇒ Nh > 2h/2

=⇒ h < 2 lgNh

Alternatively:

Nh > Fh (nth Fibonacci number)

• In fact Nh = Fn+1 − 1 (simple induction)

ϕ• h 1 +
√

5
Fh = √ rounded to nearest integer where ϕ = ≈ 1.618 (golden ratio)

5 2

• =⇒ max. h ≈ logϕ n ≈ 1.440 lgn

3

Lecture 6 Balanced Binary Search Trees 6.006 Fall 2011

AVL Insert:

1. insert as in simple BST

2. work your way up tree, restoring AVL property (and updating heights as you go).

Each Step:

• suppose x is lowest node violating AVL

• assume x is right-heavy (left case symmetric)

• if x’s right child is right-heavy or balanced: follow steps in Fig. 5

x

y

A

B C

k+1

k

k-1

k-1

x

z
A

B C

k+1k-1 Left-Rotate(x)

kk

y

x

C

A B

k+1
k

kk-1

y

x

C

A B

k
k

k-1k-1

Left-Rotate(x)

Figure 5: AVL Insert Balancing

• else: follow steps in Fig. 6

x

z
A

D

k+1k-1 Left-Rotate(x)

k-1

y

x

A B

k

k-1y

B C

k

k-1
 or

k-2

Right-Rotate(z)
z

C D

k

k-1

k+1

k-1
 or

k-2

Figure 6: AVL Insert Balancing

• then continue up to x’s grandparent, greatgrandparent . . .

4

Lecture 6 Balanced Binary Search Trees 6.006 Fall 2011

Example: An example implementation of the AVL Insert process is illustrated in Fig. 7

65

41

20

11 5029

26

3

2

1

1

0

0

0

65

41

20

11 5029

26

2

1

0

0

0

1

23

Insert(23) x = 29: left-left case

65

41

20

11 5026

23

3

2

1

1

0

0

0

65

41

20

11 50

1

0
0

Done Insert(55)

29 0

3

2

26

23

1

290 0

65

41

20

11 50

2

0
0

2

26

23

1

290 0

x=65: left-right case

55

1

55

41

20

11 50

1

0φ
0

2

26

23

1

290 0

65

Done
3

0

Figure 7: Illustration of AVL Tree Insert Process

Comment 1. In general, process may need several rotations before done with an Insert.

Comment 2. Delete(-min) is similar — harder but possible.

5

Lecture 6 Balanced Binary Search Trees 6.006 Fall 2011

AVL sort:

• insert each item into AVL tree Θ(n lg n)

Θ(n)• in-order traversal
Θ(n lg n)

Balanced Search Trees:

There are many balanced search trees.

AVL Trees Adel’son-Velsii and Landis 1962

B-Trees/2-3-4 Trees Bayer and McCreight 1972 (see CLRS 18)

BB[α] Trees Nievergelt and Reingold 1973

Red-black Trees CLRS Chapter 13

(A) — Splay-Trees Sleator and Tarjan 1985

(R) — Skip Lists Pugh 1989

(A) — Scapegoat Trees Galperin and Rivest 1993

(R) — Treaps Seidel and Aragon 1996

(R) = use random numbers to make decisions fast with high probability

(A) = “amortized”: adding up costs for several operations =⇒ fast on average

For example, Splay Trees are a current research topic — see 6.854 (Advanced Algorithms)

and 6.851 (Advanced Data Structures)

Big Picture:

Abstract Data Type(ADT): interface spec.

vs.

Data Structure (DS): algorithm for each op.

There are many possible DSs for one ADT. One example that we will discuss much later in

the course is the “heap” priority queue.

Priority Queue ADT heap AVL tree

Q = new-empty-queue() Θ(1) Θ(1)

Q.insert(x) Θ(lg n) Θ(lg n)

x = Q.deletemin() Θ(lgn) Θ(lg n)

x = Q.findmin() Θ(1) Θ(lg n)→ Θ(1)

6

Lecture 6 Balanced Binary Search Trees 6.006 Fall 2011

Predecessor/Successor ADT heap AVL tree

S = new-empty() Θ(1) Θ(1)

S.insert(x) Θ(lgn) Θ(lg n)

S.delete(x) Θ(lg n) Θ(lg n)

y = S.predecessor(x) → next- Θ(n) Θ(lg n)

smaller

y = S.successor(x) → next-larger Θ(n) Θ(lg n)

7

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

