Lecture 20: Dynamic Programming II

Lecture Overview

- 5 easy steps
- Text justification
- Perfect-information Blackjack
- Parent pointers

Summary

* $\mathrm{DP} \approx$ "careful brute force"
* $\mathrm{DP} \approx$ guessing + recursion + memoization
* $\mathrm{DP} \approx$ dividing into reasonable \# subproblems whose solutions relate - acyclicly usually via guessing parts of solution.
* time $=\#$ subproblems \times time/subproblem
treating recursive calls as $O(1)$
(usually mainly guessing)
- essentially an amortization
- count each subproblem only once; after first time, costs $O(1)$ via memoization
* $\mathrm{DP} \approx$ shortest paths in some DAG

5 Easy Steps to Dynamic Programming

1. define subproblems
2. guess (part of solution)
3. relate subproblem solutions
4. recurse + memoize problems
OR build DP table bottom-up
check subproblems acyclic/topological order
5. solve original problem: = a subproblem

OR by combining subproblem solutions $\quad \Longrightarrow$ extra time

Examples:	Fibonacci	Shortest Paths
subprobs:	F_{k}	$\delta_{k}(s, v)$ for $v \in V, 0 \leq k<\|V\|$
\# for $1 \leq k \leq n$	$=\min s \rightarrow v$ path using $\leq k$ edges	
\# subprobs:	n	V^{2}
guess:	nothing	edge into v (if any)
\# choices:	1	indegree $(v)+1$
recurrence:	$F_{k}=F_{k-1}$	$\delta_{k}(s, v)=\min \left\{\delta_{k-1}(s, u)+w(u, v)\right.$
	$+F_{k-2}$	$\mid(u, v) \in E\}$
time/subpr:	$\Theta(1)$	$\Theta(1+$ indegree $(v))$
topo. order:	for $k=1, \ldots, n$	for $k=0,1, \ldots\|V\|-1$ for $v \in V$
total time:	$\Theta(n)$	$\Theta(V E)$
		$+\Theta\left(V^{2}\right)$ unless efficient about indeg. 0
orig. prob.:	F_{n}	$\delta_{\|V\|-1}(s, v)$ for $v \in V$
extra time:	$\Theta(1)$	$\Theta(V)$

Text Justification

Split text into "good" lines

- obvious (MS Word/Open Office) algorithm: put as many words that fit on first line, repeat
- but this can make very bad lines

Figure 1: Good vs. Bad Text Justification.

- Define $\underline{\text { badness }}(i, j)$ for line of words $[i: j]$.

For example, ∞ if total length $>$ page width, else (page width - total length) ${ }^{3}$.

- goal: split words into lines to min \sum badness

1. $\underline{\text { subproblem }}=$ min. badness for suffix words $[i:]$
$\Longrightarrow \#$ subproblems $=\Theta(n)$ where $n=\#$ words
2. guessing $=$ where to end first line, say $i: j$
$\Longrightarrow \#$ choices $=n-i=O(n)$
3. recurrence:

- $\mathrm{DP}[\mathrm{i}]=\min ($ badness $(i, j)+D P[j]$ for j in range $(i+1, n+1))$
- $D P[n]=0$
\Longrightarrow time per subproblem $=\Theta(n)$

4. order: for $i=n, n-1, \ldots, 1,0$
total time $=\Theta\left(n^{2}\right)$

Figure 2: DAG.
5. $\underline{\text { solution }}=D P[0]$

Perfect-Information Blackjack

- Given entire deck order: $c_{0}, c_{1}, \cdots c_{n-1}$
- 1-player game against stand-on-17 dealer
- when should you hit or stand? GUESS
- goal: maximize winnings for fixed bet $\$ 1$
- may benefit from losing one hand to improve future hands!

1. subproblems: $\mathrm{BJ}(i)=$ best play of $\underbrace{c_{i}, \ldots c_{n-1}}_{\text {remaining cards }}$ where i is \# cards "already played"
$\Longrightarrow \quad \#$ subproblems $=n$
2. guess: how many times player "hits" (hit means draw another card)
\Longrightarrow \# choices $\leq n$
3. recurrence: $\mathrm{BJ}(i)=\max ($
outcome $\in\{+1,0,-1\}+\operatorname{BJ}(i+\#$ cards used $)$

$$
\text { for } \# \text { hits in } 0,1, \ldots \text { if valid play } \sim \text { don't hit after bust }
$$

$$
\begin{aligned}
& O(n) \\
& O(n)
\end{aligned}
$$

)
\Longrightarrow time/subproblem $=\Theta\left(n^{2}\right)$
4. order: for i in reversed (range $(n))$
total time $=\Theta\left(n^{3}\right)$
time is really $\sum_{i=0}^{n-1} \sum_{\# h=0}^{n-i-O(1)} \Theta(n-i-\# h)=\Theta\left(n^{3}\right)$ still
5. solution: $\operatorname{BJ}(0)$
detailed recurrence: before memoization (ignoring splits/betting)

Figure 3: DAG View

Parent Pointers

To recover actual solution in addition to cost, store parent pointers (which guess used at each subproblem) \& walk back

- typically: remember argmin/argmax in addition to min/max
- example: text justification

```
(3)' DP[i] = min(badness(i,j) + DP[i][0],j)
            for j in range(i+1,n+1)
    DP[n] = (0, None)
(5)' i = 0
    while i is not None:
        start line before word i
        i = DP[i][1]
```

- just like memoization \& bottom-up, this transformation is automatic no thinking required

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

