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PROFESSOR: All right, today we continue our exciting adventure into dynamic programming. Are

you excited? I'm excited, super excited. Dynamic programming, as you recall way

back before Thanksgiving, is a super exciting powerful technique to design

algorithms, especially to solve optimization problems where you want to maximize

or minimize something. Last time, we saw how two algorithms we already knew--

namely, how to compute the nth Fibonacci number and how to compute shortest

paths via Bellman-Ford-- are really dynamic programs in disguise.

And indeed for, at least for Bellman-Ford, that's how they were invented, was to

apply a general technique which we're going to see today in full generality, more or

less-- most of this is generality-- in five easy steps. And we're going to see that

technique applied to two new problems which are much more interesting than the

ones we've already solved-- namely, how to make your text look nice in a

paragraph, where to break the lines. That's text justification. And how to win and

make loads of money at blackjack. So lots of practical stuff here, and we're going to

see one new technique for general dynamic programming.

These are some things I wrote last time. Actually, one of them I didn't write last time.

In general, you can think of dynamic programming as a carefully executed brute

force search. So in some sense, your algorithm is going to be trying all the

possibilities, but somehow avoiding the fact that there are exponentially many of

them. By thinking of it in a clever way, you can reduce the exponential search space

down to a polynomial one, even though you're still not being very intelligent you're

still blindly trying all possibilities. So that's the brute force part.

In more detail, the three main techniques in dynamic programming are the idea of

guessing, the idea that, oh, I want to find the best way to solve a problem. Let's pick
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out some feature of the solution that I want to know. I don't know it, so I'll guess the

answer-- meaning I'll try all the possibilities for that choice and take the best one. So

guessing is really central to dynamic programming.

Then we also use a recursion, some way to express the solution to our problem in

terms of solutions to sub-problems. So it's usually very easy to get a recursion for a

lot of problems as long as they have some kind of substructure. Like shortest paths,

we had that some paths of shortest paths were also shortest paths, so that was

handy. Usually the recursion by itself is exponential time, like even with Fibonacci

numbers.

But we add in this technique of memoization, which is just once we compute an

answer we've stored in a lookup table, if we ever need that answer again we reuse

it instead of recomputing it. So we store it. We write down in our memo pad anything

that we compute. Those techniques, all these techniques together give you,

typically, a polynomial time dynamic program-- when they work, of course.

Memoization makes the recursion polynomial time. The guessing is what is doing a

brute force search. And magically, it all works if you're careful.

Another perspective-- kind of an orthogonal perspective or another way of thinking

about it, which I think should be comfortable for you because we spent a lot of time

doing shortest paths and expressing problems that we care about in terms of

shortest paths even if they don't look like it at first glance-- dynamic programming in

some sense is always computing shortest paths in a DAG. So you have some

problem you want to solve, like you have text you want to split up into lines so it

looks nice in a paragraph, you express that problem somehow as a directed acyclic

graph.

And then we know how to compute shortest path in directed acyclic graphs in linear

time. And that's basically what dynamic programming is doing. I didn't realize this

until last week, so this is a new perspective. It's an experimental perspective. But I

think it's helpful. It's actually-- dynamic programming is not that new. It's all about

how to be clever in setting up that DAG. But in the end, the algorithm is very simple.
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And then we had this other perspective-- back to this perspective, I guess. In

general, we have-- the real problem we want to solve, we generalize it in some

sense by considering lots of different sub-problems that we might care about. Like

with Fibonacci, we had the nth Fibonacci number. We really just wanted the nth

Fibonacci number. But along the way, we're going to compute all f1 up to fn.

So those are our sub-problems. And if we compute the amount of time we need to

solve each sub-problem and multiply that by the number of sub-problems we get,

the total time required by the algorithm. This is a general true fact. And the fun part

here is we get to treat any recursive calls in this recursion as free, as constant time,

because we really only pay for it first time. That's counted out here. The second

time we call it, it's already memoized, so we don't have to pay for it.

So this is, in some sense, an amortization, if you remember amortization from table

doubling. We're just changing around when we count the cost of each sub-problem,

and then this is the total running time. OK, so that's the spirit we saw already. I'm

going to give you the five general steps, and then we're going to apply them to two

new problems.

So five easy steps to dynamic programming. Unfortunately, these are not

necessarily sequential steps. They're a little bit interdependent, and so "easy"

should be in quotes. This is how you would express a dynamic program, and in

some sense how you'd invent one, but in particular how you would explain one.

OK, let me get to the main steps first. First step is to figure out what your sub-

problems are going to be. Second part is to guess something. Third step is to relate

sub-problem solutions, usually with a recurrence. I guess always with a recurrence.

Fourth step is to actually build an algorithm.

And we saw two ways to do that last time. One is to use recursion and memoization,

which is the way I like to think about it. But if you prefer, you can follow the bottom

up approach. And usually that's called building a table. And that one's basically to

turn our recursion and memoization, which is kind of fancy, into a bunch of for

loops, which is pretty simple. And this is going to be more practical, faster, and so
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on. And depending on your preference, one of them is more intuitive than the other.

It doesn't matter. They have the same running time, more or less, in the worst case.

Then the fifth step is to solve the original problem. All right, so we've sort of seen

this before. In fact I have, over here, a convenient table. It's called cheating. The

two problems we saw last time, Fibonacci numbers and shortest paths. And I've got

steps one, two, three, four-- I ran out of room, so I didn't write five yet. But we'll get

there.

So what are our sub-problems? Well, for Fibonacci, they were f1 through fn. So

there were n different sub-problems. And in general because of this formula, we

want to count how many sub-problems are there. So number of sub-problems is--

this is what we need to do algorithmically. And then for analysis, we want to counter

number of sub-problems for step one. And so for Fibonacci there were n of them.

For shortest paths, we defined this delta sub k of sv. This was the shortest path

from s to v they uses at most k edges. That was sort of what Bellman-Ford was

doing. And the number of different sub-problems here was v squared, because we

had to do this for every vertex v and we had to do it for every value of k between 0

and v minus 1. v minus was is the number of rounds we need in Bellman-Ford. So

it's v times v, different sub-problems, b squared of them.

OK, second thing was we wanted to solve our problem. And we do that by guessing

some feature of the solution. In Fibonacci, there was no guessing. So the number of

different choices for your guess is one. There's nothing. There's only one choice,

which is to do nothing.

And for shortest paths, what we guessed was-- we know we're looking for some

path from s v. B Let's guess what the last edge is. There's some last edge from u to

v, assuming the path has more than one edge-- or more than zero edges. When

could the edge possibly be? Well, it's some incoming edge to v. So there's going to

be indegree of v different choices for that. And to account for the case that that's

zero, we do a plus 1. But that's not a big deal.
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So that was the number of different choices. In general if we're going to guess

something, we need to write down the number of choices. For the guess, how many

different possibilities are there? That's our analysis.

OK, the next thing is the recurrence. That's step three. We want to relate all the

sub-problem solutions to each other. For Fibonacci, that's the definition of Fibonacci

numbers. So it's really easy. For shortest paths, we wrote this min. In general,

typically it's a min or a max, whatever you're trying to solve here. We're doing

shortest paths. You could do longest paths in the same way.

So you compute them in of delta sub sk minus 1 of su. The idea is we want to

compute this part of the path, the s to u part. And we know that has one fewer edge,

because we just guessed what the last edge was. Except we don't really know what

the last edge was, so we have to try them all. We try all the incoming edges into v--

that's this part-- and for each of them we compute-- I forgot something here. This is

the cost of the first part of the path. Then I also need to do plus the weight of the uv

edge. That will be the total cost of that path.

You add those up, you do it for every incoming edge. That is, in some sense,

considering all possible paths. Assuming you find the shortest path from s to u,

that's going to be the best way to get there. And then use some edge from u to v for

some choice of u. This will try all of them. So it's really trying all the possibilities. So

it's pretty clear this is correct if there are no negative weight cycles. You have to

prove some things. We've already proved them.

It's just slow, but once you add memoization, it's fast. Now, how long does it take to

evaluate this recurrence, constant time, if you don't count the recursive calls or

count them as constant? Over here, we're taking a min over n degree of v things.

So we have to pay n degree of v time, again the recursions as free. But for each

one of them, we have to do an addition. So it's constant work per guess.

And this is quite common. Often, the number of guesses and the running time per

sub-problem are the same, the constant factors. Sometimes they're different. We'll

see some examples today. OK, step four. Let's see. So here we evaluate the time
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per sub-problem. Once you have the recurrence, that becomes clear. You want to

make sure that's polynomial. Often these are the same.

And then we add the recursive memorize or build a DP table. I'm not going to write

those. We did it for Fibonacci last time, shortest paths. Pretty easy. And in general,

what we need to check here is that the sub problem recurrence is acyclic. In other

words, that it has a topological order so we can use topological sort. We don't

actually use topological algorithm usually. You can just think about it.

In the case of Fibonacci numbers, it's clear you want to start with the smallest one

and end up with the biggest one. You can't do the reverse, because then when

you're trying to computer the nth you don't have the ones you need, the n minus 1

and n minus 2. But if you do it in this order, you always have the one you need by

the time you get there.

In general, there's a DAG there-- and for Fibonacci, it was like this. Every node

depends on the previous and the second previous. But you just choose a

topological order, which is here left to right, and you're golden. And these are

actually the for loops you get in the bottom of DP.

For shortest paths, you have to think a little bit. You have to do the for loop over k

on the outside, the for loop over V on the inside. The reverse does not work. I won't

go through that, but we drew the DAG last time. And that's the main thing you need

to do here. And then, of course, you use this formula to compute the overall running

time, which is just multiplying this quantity with this quantity. Total time.

Then there's just one last step that usually isn't that big a deal, but you have think

about it. You need to make sure that the problem you actually cared about solving

gets solved. In the case of Fibonacci and shortest paths, this is pretty clear. I didn't

write it. We can do it on here. Solve the original problem. Fibonaci, it is Fn. And this

is one of our sub-problems, so if we solve all of them, we're done.

For shortest paths, it's basically delta sub v minus 1 of sv for all v. That's single

source shortest paths. And by our Bellman-Ford analysis, that gives us the right
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shortest paths. There are no negative weight cycles.

And sometimes this requires extra time to combine your solutions to get the real

thing. Here of course, we just have the answers, so writing them down does not

take very long. So that's the dominant running time-- which I didn't write, I should

have written in under for here-- this ends up being n, this ends up being VE. OK, I

don't want to spend more time on those examples. Let's go to new things.

So first problem we're going to look at today is text justification. And the informal

statement of this problem is you're given some text-- which means a string, a whole

bunch of characters. And we want to split them into good lines. The rules of the

game here are we're going to, like in the early lectures of document distance where

you have some definition of splitting a document into words separated by spaces.

And what we want to do is cut. We can only cut between word boundaries. And we

want to write some text, it's going to have some spaces in it. Then there's a new

line, something like that. And we want to justify our text on the right here. And so

we'd like to avoid big gaps like this because they look ugly, they're hard to read.

Now, if you use Microsoft Word-- at least before the latest versions-- they follow a

greedy strategy, which is very simple. You pack as many words as you can on the

first line, then you go to the next line, pack as many words as you can on the

second line. Keep going like that. And that strategy is not optimal. If you use LaTeX-

- as some of you have been doing on problem sets, and I think also new versions of

Word but I'm not sure-- then it uses dynamic programming to solve this problem.

And that's what we're going to do here.

So let me specify a little bit more about what we mean here. So the text we're going

to think of as a list of words. And we're going to define a quantity badness. And this

is an anesthetic quantity, if you will. I'm going to tell you what LaTeX uses. But this is

sort of how bad it is to use-- or let's say, yeah, words i through j as a line.

So this is python notation. So it starts at i and ends at J minus 1. That'll be

convenient. So I have this list of words. And if I look at words i through j minus 1 and
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I think of what happens if I pack them in a line, well, they may fit or they may not fit.

So there are going to be two cases. If they don't fit, I'm going to write infinity. So

that's really bad.

So I have some notion of how wide my line can be. And if the sum of the lengths of

those words plus the sum of the lengths of the spaces as small as possible is bigger

than the width of my screen-- or page, I guess-- then I say they don't fit, and then I

define badness to be infinity-- meaning, I never want to do that. This is actually

LaTeX sloppy mode, if you want to be technical.

Otherwise, it's going to be page width minus total width cubed. Why cubed? Who

knows. This is the LaTeX rule. And squared would probably also be fine. So this is

the width of the page minus the total width of those words, which you also have to

include the spaces here. You take the difference. You cube it. And so when this is

small-- I mean, when these are very close-- then this is going to be close to zero.

That's good. That means you use most of the line.

When the total width is much smaller than the page width, then this will be a large

value. You cube it, it will be even larger. So this will highly discourage big gaps like

this. And it will very much discourage not fitting. So there's a tradeoff, of course.

And the idea is you might-- in the greedy algorithm, you make the first line as good

as you can. But it might actually be better to leave out some of the words that would

fit here in order to make the next line better. In general, it's hard to tell, where

should I cut the lines in order to get the best overall strategy? What I'd like to

minimize is the sum of the badnesses of the lines. So it's a sum of cubes, and that's

really hard to think about.

But that's what dynamic programming is for. You don't have to think. It's great

because it's brute force. OK, so the first thing we need to do is define sub-problems.

This is, in some sense, the hard part. The rest will follow easily. So I think actually it

might be easier to think about, for this problem, what would be the brute force

strategy? How would you try all possibilities, exponential time? Suggestions? Yeah?
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AUDIENCE: Try all partitions of the words that don't fit?

PROFESSOR: Try all partitions of the word, so-- of the string of words. So I mean, it could be it all

fits in on one line. It could be it's split into two lines. I try all possible splits there. In

general, I'm guessing for every word, does this start a line or not? That would be all

ways. And so there are 2 to the n. If I have n words, there's 2 to the n different

splits. For every word I say yes or no, does this is begin a line?

So what I'd like to figure out is where those lines begin. That was the point of that

exercise. So any suggestions? Maybe it's actually easier to jump ahead and think,

what would I guess in my solution if I have this big string of words? What's the

natural first thing to guess? Yeah?

AUDIENCE: Guess how long the first line is?

PROFESSOR: Guess how long the first line is, yeah. We know that the first word begins a line. But

where does the second line begin? So I'd like to guess where the second line

begins. That's-- so you know, I have the beginning of a line here and then I have a

beginning of a line here at the fourth word. Where does the second line begin? I

don't know. Guess.

So I'm going to try all the possible words after the first word. And say, well, what if I

started my second line here? At some point I'm going to be packing too much into

the first line, and so I abort. But I'll try them all. Why not? OK, that's good.

The issue is that once I've chosen where the second line is, of course the next thing

I want to guess is where the third line begins. And then I want I guess where the

fourth line begins, and so on. In general, I need to set up my sub-problems so that

after I do the first guess I have the problem of the original type. So originally I have

all the words. But after I guess where the second line begins, I have the remaining

words.

What's a good word for the remaining words? If I give you a list of words and I want

from here on, it's called-- what? A sub-problem, yes. That's what we want to define.

It's called a suffix of the array. That's the word I was looking for. It's tough when I

9



only have one word answers.

So my sub-problems are going to be suffixes. Which is, in python notation, i colon.

They call it splices. And how many sub-problems are there if I have n words? Two?

Sorry?

AUDIENCE: 2 to the n.

PROFESSOR: 2 the n? That would be a problem if it's 2 to the n. I hope it's only n. Originally, we

said, OK, for every word, we're going to say, is this in our out? Is this the beginning

or not? That's 2 to the n. But here, the idea is we're only thinking about, well, what

are the words that remain? And it could be you've dealt with the first 100 words and

then you've got n minus 100 left, or it could be you've dealt with the first thousand

words and you've got n minus 1,000. There's only n choices for that.

We're only remembering one line, this is the key. Even though we may have already

guessed several lines, we're just going to remember, well, OK. This is what we have

left to do. So let's forget about the past. This is what makes dynamic programming

efficient. And we're just going to solve it, solve these sub-problems, forgetting about

the past.

So the sub-problem-- I'm not going to write it here-- is if I give you these words,

never mind the other words, how do I pack them optimally into a paragraph? I don't

care about the other words, just these words. So this is a different version of the

same problem. Initially, we have n words to do. Now I have n minus i words to do.

But it's again text justification. I want to solve this problem on those words. That's

just how I'm going to define it.

This will work if I can specify a recurrence relation. As we said, what we guess is

where to break the first line, where to start the second line for those words. OK, so

this is-- it could be the i plus first line. It could be the i plus second line-- or sorry,

word. Some word after i is where we guess the second word. The number of

choices for the guess is at most n minus i. I'm just going to think of that as order n. It

won't matter.
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The third part is we need a recurrence relation. I claim this is very easy. I'm going

to-- I didn't give this problem a name, so I'm just going to write it as DP of i. So this

is going to be the solution to that suffix, words from i onward. And I'd like to-- what I

want to do is consider all possible guesses. So I mean this is going to be pretty

formulaic at this point. After I've set up these ideas there's pretty much only one

thing I can write here, which is I want to do a for loop. That would be the for loop of

where the second line can start.

I can't start at i, because that's where the first line starts. But it could start at i plus 1.

And this special value of n will mean that there is no second line. OK, so DP of i--

now I want to do this for loop in order to try all the possible guesses. j will be the

word where the next thing starts. So then what do I write up here? If I make this

guess-- all right, so I have word i is the first word of the first line. And then word j is

the first word of the second line.

And then there's more stuff down below. I don't know what that is. But how can I use

recursion to specify this? DP of j, exactly. I guess if I'm doing recursion, I should use

parentheses instead of brackets. But if you're doing it bottom up, it would be square

brackets. So that's just DP of j. That's the cost of the rest of the problem.

And I can assume that that's free to compute. This is the magic of dynamic

programming. But then I also have to think about, well, what about the first line?

How much does that cost? Well, that's just badness of ij. And we've already defined

that. We can compute it in constant time. Dynamic programming doesn't really care

what this is. It could be anything. As long as you're trying to minimize the sum of the

badnesses, whatever function is in here, we just compute it here.

That's the power of dynamic programming. It works for all variations of this problem,

however you define badness. So you might say, oh, that's a weird definition. I want

to use something else instead. That's fine, as long as you can compute it in terms of

just i and j and looking at those words.

OK, now I need to do a min over the whole thing. So I want to minimize the sum of

the badnesses. So I compute for every guess of j, I compute the cost of the rest of
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the problem plus the cost of that first line. And this, is in some sense, checking all

possible solutions magically. OK. That's the recurrence.

We need to check some things. I guess right now we just want to compute how

much time does this cost, time per sub-problem. To do this for loop, basically I do

constant work-- all of this is constant work-- for each choice. So there's order n

choices, so this is order n. Now we have to check that there's a topological order for

this problem or for these sub-problems.

And this is easy, but a little different from what we've done before because we have

to actually work from the end backwards, because we're expressing DP of i in terms

of DP of larger values of i. j is always bigger than i. And so we have to do it from the

right end back to the beginning. And n minus 1 down to 0. I didn't actually define DP

of n. There's a base case here which is DP of n equals 0.

Because the meaning of DP of n is I have zero words, the nth word onward. There

is no nth word. It's 0 to n minus 1 in this notation. So I don't pay anything for a blank

line. OK, so that's our top logical order. This one, of course, is instantaneous. And

then we work backwards. And always whenever we need to compute something, we

already have the value.

The total time we get is going to be the number of sub problems-- which is n times

the running time per sub-problem. which is order n, which is order n squared. And in

the worst case, it is indeed theta n squared. Although in practice it's going to work

better, because lines can't be too long. So that's the running time.

Then finally we have to check that the original problem actually gets solved. And in

this case, the original problem we need to solve is DP of 0 because DP of 0 means I

take words from 0 onwards. That's everybody. So that's the actual problem I want to

solve. So we work backwards. We solve all these sub-problems that we don't

directly care about, but then the first one is the one we want. And we're done.

So in quadratic time, we can find the best way to pack words into lines. Question?
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AUDIENCE: [INAUDIBLE]

PROFESSOR: DP of j is returning. It's like this. So DP of-- this is a recursive definition. Imagine this

is a recursive function. I wrote equals, which is Haskell notation, if you will. But

normally, you think of this as like def DP of i is return min of this. This is python. So

it's returning the cost. What was the best way to pack those lines from j onwards?

That's what DP of j returns.

So it's a number. It's going to be a sum of badness values. Then we add on one

new badness value. It's still a sum of badness values. We return the best one that

we find. Now, this does not actually pack the words. That's a good-- maybe your

implicit question. It's not telling you how to pack the words. It's telling you how much

it costs to pack the words.

This is a lot like shortest paths where we didn't-- it was annoying to actually figure

out what the shortest path was. Not that annoying, but that's not what we were

usually aiming to do. We were just trying to figure out the shortest path weight. And

then once we knew the shortest path weight, it was pretty easy to reconstruct the

paths.

So maybe I'll take a little diversion to that and talk about parent pointers. The idea

with parent pointers is just remember which guess was best. it's a very simple idea,

but it applies to all dynamic programs and lets you find the actual solution, not just

the cost of the solution.

We did the same thing with shortest paths. We even called them parent. So when

we compute this min, were trying all choices of j. One of them-- or maybe more than

one, but at least one of them actually gave you the min. That's usually called the arg

min in mathematics. It's what was the value of j that gave you the minimum value of

this thing. So I mean, when you compute the min, you're iterating over every single

one. Just keep track of which one was the best.

That's it. Call that the parent pointer. Do I need to write that? Here, parent-- parent

of i is going to be arg min of that same thing. So it's a j value. It's the best j value for
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i. And so we store that for each i. It cost no more work, just a constant factor more

work than computing the min. We also write down the arg min.

So we're already storing the min in the DP table. DP of i would get sorted to be that.

We also store parent of i. And then once we're done, we start with our original

problem and we follow parent pointers to figure out what the best choices were. So

we start at 0 because we know word zero begins a line. And then 0 will be the first

line. Then we go to parent of 0. That will be where the second line begins.

Then we go to parent of parent of 0. That will be where the third line begins. OK,

because these were the best choices for where the second line begins, this is the

best place where the second line begins. Given that this is the first line, this is the

best line where the second line begins given that this was the first line. So that's

really the third line given this was the second line.

Little confusing, but you just a simple for loop. You start with 0 because that's our

original problem. You keep calling parent of the thing you currently have. In linear

time, you will reconstruct where the lines break. So you can use this technique in

any DP. It's very simple. It's totally automatic. Just like memoization is a technique

that you can apply without thinking, you could even write a program, given a

recursive algorithm, would turn into a memorized recursive algorithm. It's totally

automated.

Same thing with the bottom up DP table. As long as you know what the topological

order is, just make those for loops and then put exactly the recursive call but turn it

into an array call. Boom, you've got a bottom up algorithm. Totally automatic, no

thinking required. Parent pointers also, no thinking required. As long as you're

following the structure of trial guesses compute some value-- just remember what

the guess was-- you reconstruct your solution. That's the great thing about dynamic

programming is how much of it is automatic.

The hard part is figuring out what to guess and then what your sub-problems are, or

the other order. Whatever works. Any other questions about text? I would like to

move on to blackjack. OK, now I brought some cards, because some of you may
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not know the rules to blackjack. How many people know blackjack? OK. How many

people do not and are willing to admit it? A few, all right. So this is for you and for

fun, entertainment.

So I'm going to bring Victor up to help demonstrate the rules of blackjack. We're

going to play standard Casino blackjack as in the movie 21, or whatever. So I'm

going to just do a random cut here so I can't sheet. You have a tablet, that's scary.

You're going to look at strategy.

VICTOR: Nothing special.

PROFESSOR: All right. Hopefully you do not have x-ray vision. So the way it works is there's a

dealer player and one or more players. We're just going to do it with one player to

keep it simple. I'm going to be the dealer. So my strategy is actually totally

deterministic, there's nothing interesting. Victor has the hard part of winning.

So to start out, I believe we deal to you first, then to me, then to you, then to me. So

let's hold up these cards, Victor, so that people can see them. You don't get to see

one of my cards. That's some peculiarity of the rule. And if the sum of our cards

goes over 21, we lose the game. Victor first. I cannot have a value more than 21 in

these hands, because I only have two cards.

You have a value of-- ha, ace. Great. An ace can be a 1 or an 11. That's the fun

rule. So this is either an 8 or an 18. And so Victor has a choice of whether to take

another card or not. What would you like to do?

VICTOR: Standard strategy says stand.

PROFESSOR: He stands. So he's going to stick to that. At this point, my cards flip over. I have 17,

which is same you, which I believe means-- I forget about tie rules.

VICTOR: I have 18.

PROFESSOR: You have 18. All right.

VICTOR: See? The strategy works.
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PROFESSOR: So that's good. I'm going to hit in the hope that I have a small card that will push me

right above you. But I do not. I lose. I'm sad.

VICTOR: It says always stand on a 17.

PROFESSOR: Oh, always stand on 17? Huh. All right, never mind. Thanks. Yeah, I still lose. The

game is over. My strategy is always stand on a value--

VICTOR: Stand on 17.

PROFESSOR: 17 or higher. And if I have a value less than 17, I always take another card. So let's

do it one more time to get it right. So I'm going to deal to you, deal to me, deal to

you, deal to me. So hold up your cards. You have 18 again. Are you cheating?

VICTOR: I still have to stand.

PROFESSOR: You still stand, according to tablet. So I, in this case, have a 20. And so this I win. So

you get the idea. Let's say in each case we're betting $1. So at this point, we'd be

even. He won $1, I won $1. But in general, slight-- I think it's balanced.

VICTOR: For these rules, there's a 1% advantage for the house.

PROFESSOR: 1% advantage for the house. Interesting. All right, well, that's beyond this class.

What we're going to see is how to cheat in blackjack. So this is going to be-- I

encourage you to try this out at casinos. Just kidding. This is a little bit difficult to

actually do in a casino unless you have an inside man. So if you have an inside

man, go for it. It's guaranteed to win you lots of money because it's going to play

optimally.

In perfect information blackjack, I suppose that I already know the entire deck.

Suppose somehow either I get to put the deck there, or I have some x-ray vision. I

get to see the entire deck ahead of time. And then somebody's going to play

through a game over and over with me-- or not over and over, but until the deck is

depleted-- and I want to know in each case, should I hit, or should I stand? And I

claim with dynamic programming you can figure that out-- using exactly the same
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strategy as text, actually.

It's really for each word, should I start a new line or not? Same problem here. It's

slightly more complicated to write down. So let's say the deck is a sequence of

cards. And I'm going to call it c0, c1 up to cn minus 1, n cards. And you are one

player. First is the dealer.

I don't know how to solve this for two players, interesting open problem. But for one

player I can do it. Let's say $1 bet per hand, I think they're called. I'm not sure. Per

play? Per box? Whatever. You're not allowed to double. You're not allowed to split.

All these fancy rules are harder to think about, although you might be able to solve

them as well.

So the idea is I have some cards. Should I hit or should I stand? I don't know. I'll

guess. So our guessing-- let's jump ahead to the guessing part-- is whether we want

to hit or stand given a card. Actually, it would be easier to think about an entire play,

an entire hand. We're going to guess, how many times should I hit in the first play?

So initially, four cards are dealt. I look at my hands. Actually, I don't really look at my

hand. I'm just going to guess ahead of time. I think I'll hit five times this time. I think

I'll hit zero times this time. I mean, I'm just going to try them all. So I don't really

have to be intelligent here, OK? It's kind of crazy but it works.

Our sub-problems, can anyone tell me what our sub-problems would be, In one

word or less? Less would be impressive. Yeah?

AUDIENCE: Where you start the new hand.

PROFESSOR: Where do you start the new hand? Yeah. So it's going to be suffixes of the cards.

So at some point we do a play, and then we get to ith card. And then the rest of the

game will be from the ith card on. So it's going to be suffix ci colon, I guess would be

the notation here. It's a bit awkward. These are the cards that remain.

And so the sub-problem is, what is the best play? What's the best outcome given $1

bets? How much money can I make-- maximize my winning, say-- given these cards
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onward? Who knows what happened to their earlier cards, but just these are the

cards. I'm left with. Number of sub-problems is-- hmm? n. How many choices of i

are there? n choices.

This really important. It's really useful that we're thinking about suffixes. It's not that

some subset of the cards have been played. That would be really hard, because

there's exponentially many different subsets that could be left. It's always a prefix

that gets played, and therefore suffix is left. And there's only n suffixes, remember

that. We're going to use it over and over in dynamic programming.

So now we need to solve the sub-problem. Starting from ci, what's the best way to

play? Well, the first four cards are fixed, and then we guess how many hits are left.

So it's going to be something like n minus i minus four different possibilities for-- I

mean, that would be the maximum number of hits I could take all the remaining

cards. That would be the most. And let's see, so the number of choices-- I'll just say

it's, at most, n. I don't have to be fancy here.

OK, now we go to the recurrence. So I'm going to call this blackjack of i. It's going to

be the solution. I want to solve this sub-problem from i onwards. What's the best

play? And I guess it's going to be a max if I'm measuring winnings. And what's the

winnings if I decide to hit this many times? It's a little bit hard to write down the exact

formula. I'm going to write a rough version which is the outcome of that first play. It's

going to be either I lose $1, we tie, or I win $1.

So if we end up with the same value, you actually-- in most versions-- you get your

money back, nothing changes. The bet is nullified. So that's a zero outcome. But if

we're only betting $1, these are the three possible outcomes. You can compute this,

right? If I told you how many times you hit, then you just execute through those

cards and you compute the values of my hand, of your hand versus the dealer's

hand. You see, did anyone bust? If so, they lose. Otherwise you compare the

values and you see which is bigger or smaller.

This is easy to do in linear time. No biggie. What's useful here is that the dealer

strategy is deterministic. So after you know how many cards you take, what the
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dealer does is force, because he just looks. Do I have 17 or greater? If not, take

another card and keep repeating that. So it's a deterministic strategy. In linear time,

you can figure out what the outcome is.

Then you also have to add the outcome of all the remaining cards, which is just BG

of j. This is recursion, super easy. We do this for all choices of j. It's like a range of i

plus 4 up to n, I think. Sure, that'll work. I should probably put an if here, which is if

it's a valid play.

There are some constraints here. If I've already busted, I can't hit again. So in fact

what you have to do in this for loop is say, well, maybe I take another hit. Maybe I

take another hit. At some point I go over 21, and then you have to stop the for loop.

So I'm writing that as an if. You can also do it with a break, however you want. But

that's-- you're considering all possible options, all valid options of play.

For each of them, you see what the outcome was after the dealer takes some more

cards. This is actually a little bit funny. Sorry, this should really be the number of hits

in range from, let's say, 0 to n. Maybe you don't hit at all. And then j is a little bit

tricky, because this is actually i plus 4 plus the number of hits plus the number of

dealer hits. OK, so you have to run this algorithm to compute what happened, which

computes how many times a dealer took a card. That's how many cards got

consumed. And so that's-- if you do i plus 4 plus that plus that, that's how many

cards are left, or where the cards resume. And then you call BG on that.

So we're, in general, from BG of i-- if you think of the DAG-- there's some position,

maybe i plus 4 happens. Maybe it doesn't happen. It depends on what the dealer

does. We're going to depend on i plus 6, i plus 5 maybe. It's going to be all of these

possibilities. These are all different plays. And then on each of these edges, we're

going to have plus 1, 0, or minus 1. Those are the outcomes, whether I won or lost

or tied.

And then we're just computing a shortest path in this DAG. It's actually really easy if

you think about it that way. This is just how many cards are left. From that position,

you just see what are all the possibilities? What are all the edges that I could go to?
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What states could I to go to next? How many cards are remaining? How much did it

cost me or win me? And then take longest paths in that DAG.

That will give you the exact same answer. That's what this dynamic programming is

doing. In the lecture notes, there's more details where I actually tried to write out

this function, this recurrence as an algorithm. You could do it, assuming I've got

everything right. It's not that hard. The order here is just the same as the order we

did before. The running time is going to be cubic in the worst case, because we

have-- it's a little non-obvious, but we have n sub-problems. For each of them, we

have n choices. And for each choice we have to run the dealer strategy.

And so that conceivably could take linear time. Here I'm assuming a general value

of 21. If 21 is actually constant, it only be constant time to play out a single hand,

and then it's quadratic time. So it depends on your model of generalized blackjack.

But that's it. And get some flavor of the power of dynamic programming, we're going

to see it's even more powerful than this in the next two lectures.
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