Lecture 18: Shortest Paths IV - Speeding up Dijkstra

Lecture Overview

- Single-source single-target Dijkstra
- Bidirectional search
- Goal directed search potentials and landmarks

Readings

Wagner, Dorothea, and Thomas Willhalm. "Speed-up Techniques for Shortest-Path Computations." Proceedings of the 24th International Symposium on Theoretical Aspects of Computer Science (STACS 2007): 23-36. Read up to Section 3.2.

DIJKSTRA single-source, single-target

Initialize()

$$Q \leftarrow V[G]$$

while $Q \neq \phi$
do $u \leftarrow \mathsf{EXTRACT}_\mathsf{MIN}(\mathsf{Q})$ (stop if $u = t!$)
for each vertex $v \in \mathsf{Adj}[u]$
do $\mathsf{RELAX}(u, v, w)$

Observation: If only shortest path from s to t is required, stop when t is removed from Q, i.e., when u = t

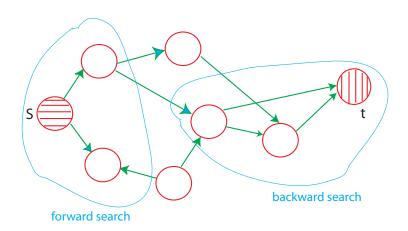


Figure 1: Bi-directional Search Idea.

Bi-Directional Search

Note: Speedup techniques covered here do not change worst-case behavior, but reduce the number of visited vertices in practice.

Bi-D Search

Alternate forward search from sbackward search from t(follow edges backward) $d_f(u)$ distances for forward search $d_b(u)$ distances for backward search

Algorithm terminates when some vertex w has been processed, i.e., deleted from the queue of both searches, Q_f and Q_b

Subtlety: After search terminates, find node x with minimum value of $d_f(x) + d_b(x)$. x may not be the vertex w that caused termination as in example to the left! Find shortest path from s to x using Π_f and shortest path backwards from t to xusing Π_b . Note: x will have been deleted from either Q_f or Q_b or both. Lecture 18

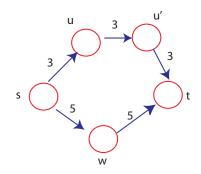


Figure 2: Bi-D Search Example.

Minimum value for $d_f(x) + d_b(x)$ over all vertices that have been processed in at least one search (see Figure 3):

$$d_f(u) + d_b(u) = 3 + 6 = 9$$
$$d_f(u') + d_b(u') = 6 + 3 = 9$$
$$d_f(w) + d_b(w) = 5 + 5 = 10$$

Goal-Directed Search or A^*

Modify edge weights with potential function over vertices.

$$\overline{w}(u,v) = w(u,v) - \lambda(u) + \lambda(v)$$

Search toward target as shown in Figure 4:

Correctness

$$\overline{w}(p) = w(p) - \lambda_t(s) + \lambda_t(t)$$

So shortest paths are maintained in modified graph with \overline{w} weights (see Figure 5).

To apply Dijkstra, we need $\overline{w}(u, v) \ge 0$ for all (u, v).

Choose potential function appropriately, to be feasible.

Landmarks

Small set of landmarks LCV. For all $u \in V, l \in L$, pre-compute $\delta(u, l)$.

Potential $\lambda_t^{(l)}(u) = \delta(u, l) - \delta(t, l)$ for each l.

CLAIM: $\lambda_t^{(l)}$ is feasible.

Feasibility

$$\overline{w}(u,v) = w(u,v) - \lambda_t^{(l)}(u) + \lambda_t^{(l)}(v)$$

= $w(u,v) - \delta(u,l) + \delta(t,l) + \delta(v,l) - \delta(t,l)$
= $w(u,v) - \delta(u,l) + \delta(v,l) \ge 0$ by the Δ -inequality
 $\lambda_t(u) = \max_{l \in L} \lambda_t^{(l)}(u)$ is also feasible

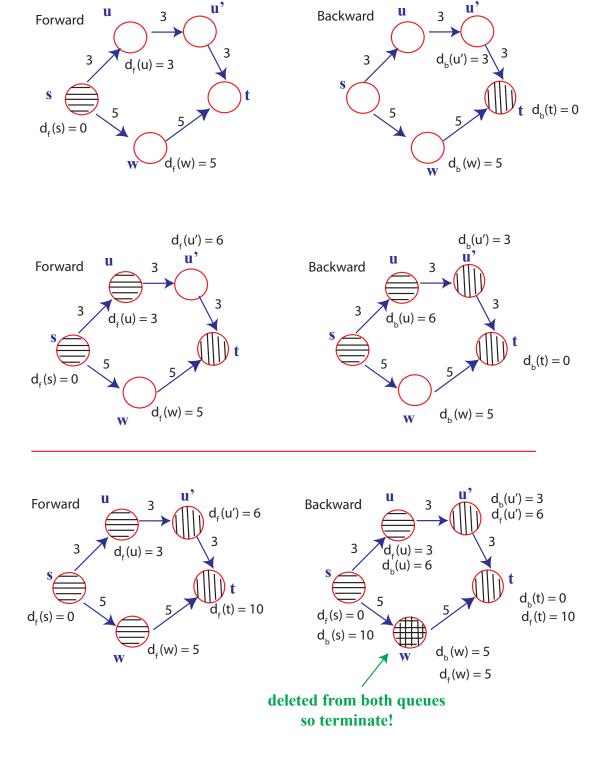


Figure 3: Forward and Backward Search and Termination.

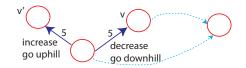


Figure 4: Targeted Search

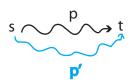


Figure 5: Modifying Edge Weights.

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.