
Lecture 19	 Dynamic Programming I of IV 6.006 Fall 2011

Lecture 19: Dynamic Programming I:

Memoization, Fibonacci, Shortest Paths, Guessing

Lecture Overview

•	 Memoization and subproblems

•	 Examples

–	 Fibonacci

–	 Shortest Paths

•	 Guessing & DAG View

Dynamic Programming (DP)

Big idea, hard, yet simple

•	 Powerful algorithmic design technique

•	 Large class of seemingly exponential problems have a polynomial solution (“only”)
via DP

•	 Particularly for optimization problems (min / max) (e.g., shortest paths)

* DP ≈ “controlled brute force”
* DP ≈ recursion + re-use

History

Richard E. Bellman (1920-1984)
Richard Bellman received the IEEE Medal of Honor, 1979. “Bellman . . . explained that
he invented the name ‘dynamid programming’ to hide the fact that he was doing mathe

matical research at RAND under a Secretary of Defense who ‘had a pathological fear and
hatred of the term, research’. He settled on the term ‘dynamic programming’ because it
would be difficult to give a ‘pejorative meaning’ and because ‘it was something not even a
Congressman could object to’ ” [John Rust 2006]

Fibonacci Numbers

F1 = F2 = 1; Fn = Fn−1 + Fn−2

Goal: compute Fn

1

Lecture 19 Dynamic Programming I of IV 6.006 Fall 2011

Naive Algorithm

follow recursive definition

fib(n):
if n ≤ 2: return f = 1
else: return f = fib(n − 1) + fib(n − 2)

=⇒ T (n) = T (n − 1) + T (n − 2) + O(1) ≥ Fn ≈ ϕn

≥ 2T (n − 2) + O(1) ≥ 2n/2

EXPONENTIAL — BAD!

Fn

Fn-1 Fn-2

Fn-2
Fn-3

Fn-3 Fn-4

Figure 1: Naive Fibonacci Algorithm.

Memoized DP Algorithm

Remember, remember

memo = { }
fib(n):

if n in memo: return memo[n]
else: if n ≤ 2 : f = 1

else: f = fib(n − 1) + fib(n − 2)
memo[n] = f
return f

2

Lecture 19	 Dynamic Programming I of IV 6.006 Fall 2011

•	 =⇒ fib(k) only recurses first time called, ∀k

•	 =⇒ only n nonmemoized calls: k = n, n − 1, . . . , 1

•	 memoized calls free (Θ(1) time)

•	 =⇒ Θ(1) time per call (ignoring recursion)

POLYNOMIAL — GOOD!

* DP ≈ recursion + memoization

• memoize (remember) & re-use solutions to subproblems that help solve problem

–	 in Fibonacci, subproblems are F1, F2, . . . , Fn

*	 =⇒ time = # of subproblems · time/subproblem

•	 Fibonacci: # of subproblems is n, and time/subproblem is Θ(1) = Θ(n) (ignore
recursion!).

Bottom-up DP Algorithm

fib = {}

for k in [1, 2, . . . , n]:
 ⎫ ⎪⎬
 Θ(1)

⎫ ⎪⎪⎪⎪⎪⎪⎪⎬

Θ(n)

if k ≤ 2: f = 1

else: f = fib[k − 1] + fib[k − 2]
fib[k] = f

return fib[n]

⎪⎪⎪⎪⎪⎪⎪⎭
⎪⎭

• exactly the same computation as memoized DP (recursion “unrolled”)

• in general: topological sort of subproblem dependency DAG

Fn-2 Fn-1 Fn. . .

•	 practically faster: no recursion

•	 analysis more obvious

•	 can save space: just remember last 2 fibs =⇒ Θ(1)

[Sidenote: There is also an O(lg n)-time algorithm for Fibonacci, via different techniques]

3

Lecture 19	 Dynamic Programming I of IV 6.006 Fall 2011

Shortest Paths

•	 Recursive formulation:
δ(s, v) = min{w(u, v) + δ(s, u) (u, v) ∈ E}

•	 Memoized DP algorithm: takes infinite time if cycles!
in some sense necessary to handle negative cycles

ts

Figure 2: Shortest Paths

•	 works for directed acyclic graphs in O(V + E)
effectively DFS/topological sort + Bellman-Ford round rolled into a single recursion

* Subproblem dependency should be acyclic

•	 more subproblems remove cyclic dependence:

δk(s, v) = shortest s → v path using ≤ k edges

•	 recurrence:
δk(s, v) = min{δk−1(s, u) + w(u, v) (u, v) ∈ E}

δ0(s, v) = ∞ for s = v (base case)

δk(s, s) = 0 for any k (base case, if no negative cycles)

•	 Goal: δ(s, v) = δ|V |−1(s, v) (if no negative cycles)

•	 memoize

•	 time: # subproblems · time/subproblem# - # -
|V |·|V | · O(v) = 0(V 3)

•	 actually Θ(indegree(v)) for δk(s, v)
•	 =⇒ time = Θ(V v∈V indegree(V)) = Θ(V E)

BELLMAN-FORD!

4

Lecture 19	 Dynamic Programming I of IV 6.006 Fall 2011

Guessing

How to design recurrence

• want shortest s → v path

s vu. . .

•	 what is the last edge in path? dunno

•	 guess it is (u, v)

•	 path is shortest s → u path + edge (u, v)#	 -
by optimal substructure

•	 cost is δk−1(s, u) + w(u, v)# -
another subproblem

•	 to find best guess, try all (|V | choices) and use best

•	 * key: small (polynomial) # possible guesses per subproblem — typically this domi

nates time/subproblem

* DP ≈ recursion + memoization + guessing

DAG view

0

1

2

3

time

•	 like replicating graph to represent time

•	 converting shortest paths in graph → shortest paths in DAG

* DP ≈ shortest paths in some DAG

5

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

