Lecture 7: Linear-Time Sorting

Lecture Overview

- Comparison model
- Lower bounds
- searching: $\Omega(\lg n)$
- sorting: $\Omega(n \lg n)$
- $O(n)$ sorting algorithms for small integers
- counting sort
- radix sort

Lower Bounds

Claim

- searching among n preprocessed items requires $\Omega(\lg n)$ time \Longrightarrow binary search, AVL tree search optimal

- sorting n items requires $\Omega(n \lg n)$
\Longrightarrow mergesort, heap sort, AVL sort optimal
... in the comparison model

Comparison Model of Computation

- input items are black boxes (ADTs)
- only support comparisons ($<,>, \leq$, etc.)
- time cost $=\#$ comparisons

Decision Tree

Any comparison algorithm can be viewed/specified as a tree of all possible comparison outcomes \& resulting output, for a particular n :

- example, binary search for $n=3$:

- internal node $=$ binary decision
- leaf $=$ output (algorithm is done)
- root-to-leaf path $=$ algorithm execution
- path length $($ depth $)=$ running time
- height of tree $=$ worst-case running time

In fact, binary decision tree model is more powerful than comparison model, and lower bounds extend to it

Search Lower Bound

- \# leaves \geq \# possible answers $\geq n$
(at least 1 per $A[i]$)
- decision tree is binary
- \Longrightarrow height $\geq \lg \Theta(n)=\lg n \underbrace{ \pm \Theta(1)}_{\lg \Theta(1)}$

Sorting Lower Bound

- leaf specifies answer as permutation: $A[3] \leq A[1] \leq A[9] \leq \ldots$
- all n ! are possible answers
- \# leaves $\geq n$!

$$
\begin{aligned}
\Longrightarrow \text { height } & \geq \lg n! \\
& =\lg (1 \cdot 2 \cdots(n-1) \cdot n) \\
& =\lg 1+\lg 2+\cdots+\lg (n-1)+\lg n \\
& =\sum_{i=1}^{n} \lg i \\
& \geq \sum_{i=n / 2}^{n} \lg i \\
& \geq \sum_{i=n / 2}^{n} \underbrace{\lg \frac{n}{2}}_{=\lg n-1} \\
& =\frac{n}{2} \lg n-\frac{n}{2}=\Omega(n \lg n)
\end{aligned}
$$

- in fact $\lg n!=n \lg n-O(n)$ via Sterling's Formula:

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \Longrightarrow \lg n!\sim n \lg n-\underbrace{(\lg e) n+\frac{1}{2} \lg n+\frac{1}{2} \lg (2 \pi)}_{O(n)}
$$

Linear-time Sorting

If n keys are integers (fitting in a word) $\in 0,1, \ldots, k-1$, can do more than compare them

- \Longrightarrow lower bounds don't apply
- if $k=n^{O(1)}$, can sort in $O(n)$ time

OPEN: $O(n)$ time possible for all k ?

Counting Sort

$\mathrm{L}=$ array of k empty lists

- linked or Python lists
for j in range n :
$L[\underbrace{\operatorname{key}(\mathrm{~A}[\mathrm{j}])}] \cdot \operatorname{append}(\mathrm{A}[\mathrm{j}]) \rightarrow O(1)$
random access using integer key
output $=[]$
for i in range k :
output.extend $(L[i])$

Time: $\Theta(n+k) \quad$ also $\Theta(n+k)$ space

Intuition: Count key occurrences using RAM output <count> copies of each key in order ... but item is more than just a key

CLRS has cooler implementation of counting sort with counters, no lists - but time bound is the same

Radix Sort

- imagine each integer in base b
$\Longrightarrow d=\log _{b} k$ digits $\in\{0,1, \ldots, b-1\}$
- sort (all n items) by least significant digit \rightarrow can extract in $O(1)$ time
- ...
- sort by most significant digit \rightarrow can extract in $O(1)$ time
sort must be stable: preserve relative order of items with the same key \Longrightarrow don't mess up previous sorting
For example:

- use counting sort for digit sort
$-\Longrightarrow \Theta(n+b)$ per digit
$-\Longrightarrow \Theta((n+b) d)=\Theta\left((n+b) \log _{b} k\right)$ total time
- minimized when $b=n$
$-\Longrightarrow \Theta\left(n \log _{n} k\right)$
$-=O(n c)$ if $k \leq n^{c}$

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

