Lecture 7: Linear-Time Sorting

Lecture Overview

- Comparison model
- Lower bounds
 - searching: $\Omega(\lg n)$
 - sorting: $\Omega(n \lg n)$
- O(n) sorting algorithms for small integers
 - counting sort
 - radix sort

Lower Bounds

Claim

- searching among n preprocessed items requires $\Omega(\lg n)$ time \implies binary search, AVL tree search optimal
- sorting *n* items requires $\Omega(n \lg n)$ \implies mergesort, heap sort, AVL sort optimal
- ... in the comparison model

Comparison Model of Computation

- input items are black boxes (ADTs)
- only support comparisons $(<, >, \leq, \text{etc.})$
- time cost = # comparisons

Decision Tree

Any comparison algorithm can be viewed/specified as a tree of all possible comparison outcomes & resulting output, for a particular n:

• example, binary search for n = 3:

- internal node = binary decision
- leaf = output (algorithm is done)
- root-to-leaf path = algorithm execution
- path length (depth) = running time
- height of tree = worst-case running time

In fact, binary decision tree model is more powerful than comparison model, and lower bounds extend to it

Search Lower Bound

• # leaves \geq # possible answers $\geq n$

(at least 1 per A[i])

- decision tree is binary
- \implies height $\geq \lg \Theta(n) = \lg n \underbrace{\pm \Theta(1)}_{\lg \Theta(1)}$

Sorting Lower Bound

- leaf specifies answer as permutation: $A[3] \le A[1] \le A[9] \le \dots$
- all n! are possible answers

• # leaves $\ge n!$

• in fact $\lg n! = n \lg n - O(n)$ via Sterling's Formula:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \implies \lg n! \sim n \lg n - \underbrace{(\lg e)n + \frac{1}{2} \lg n + \frac{1}{2} \lg(2\pi)}_{O(n)}$$

Linear-time Sorting

If n keys are integers (fitting in a word) $\in 0, 1, \ldots, k-1$, can do more than compare them

- \implies lower bounds don't apply
- if k = n^{O(1)}, can sort in O(n) time
 <u>OPEN</u>: O(n) time possible for all k?

Counting Sort

$$\begin{array}{c} \mathcal{L} = \operatorname{array of } k \ \operatorname{empty \ lists} \\ - \ \operatorname{linked \ or \ Python \ lists} \\ \text{for } j \ \operatorname{in \ range \ } n: \\ L[\operatorname{key}(\mathcal{A}[j])]. \operatorname{append}(\mathcal{A}[j]) \rightarrow O(1) \\ \operatorname{random \ access \ using \ integer \ key} \\ \text{output} = [\] \\ \text{for } i \ \operatorname{in \ range \ } k: \\ \operatorname{output.extend}(L[i]) \end{array} \right\} \begin{array}{c} O(k) \\ O(n) \\ O(\sum_{i}(1+|L[i]|)) = O(k+n) \\ O(\sum_{i}(1+|L[i]|)) =$$

<u>Time:</u> $\Theta(n+k)$ — also $\Theta(n+k)$ space

<u>Intuition</u>: Count key occurrences using RAM output <count> copies of each key in order ... but item is more than just a key

CLRS has cooler implementation of counting sort with counters, no lists — but time bound is the same

Radix Sort

- imagine each integer in base b $\implies d = \log_b k \text{ digits} \in \{0, 1, \dots, b-1\}$
- <u>sort</u> (all *n* items) by least significant digit \rightarrow can extract in O(1) time
- • •
- sort by most significant digit → can extract in O(1) time sort must be stable: preserve relative order of items with the same key
 ⇒ don't mess up previous sorting For example:

- use counting sort for digit sort
 - $\implies \Theta(n+b)$ per digit
 - $\implies \Theta((n+b)d) = \Theta((n+b)\log_b k)$ total time
 - minimized when b = n
 - $\implies \Theta(n \log_n k)$
 - = O(nc) if $k \le n^c$

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.