
Lecture 12 Numerics II 6.006 Fall 2011

Lecture 12: Numerics II
Lecture Overview

• Review:

– high precision arithmetic

– multiplication

• Division

– Algorithm

– Error Analysis

• Termination

Review:

Want millionth digit of
√

2:
√
b 2 · 102dc d = 106

Compute
√
b ac via Newton’s Method

χ0 = 1 (initial guess)
χi + a/χi

χi+1 =
2

← division!

Error Analysis of Newton’s Method

Suppose Xn =
√
a · (1 + εn) εn may be + or -

Then,

Xn + a/Xn
Xn+1 =

√ 2
a(1 + εn) + √ a

a(1+ε
= n)(2√ (1 + εn) + 1

(1+ε)
= (a)

n

2

)
√ (

2 + 2εn + ε 2
n

= (a)
2(1 + εn)

)
=

√ 2

(a

(
εn

) 1 +
2(1 + εn)

)
1

Lecture 12 Numerics II 6.006 Fall 2011

Therefore,
ε 2
n

εn+1 =
2(1 + εn)

Quadratic convergence, as] correct digits doubles each step.
Newton’s method requires high-precision division. We covered multiplication in

Lecture 12.

Multiplication Algorithms:

1. Naive Divide & Conquer method: Θ(d2) time

2. Karatsuba: Θ(dlog2 3) = Θ(d1.584...)

3. Toom-Cook generalizes Karatsuba (break into k ≥ 2 parts)

T (d) = 5T (d/3) + Θ(d) = Θ dlog3 5 = Θ d1.465...

4. Schönhage-Strassen - almost linear! Θ(d lg d

(
lg lg d

)
) using

(
FFT.

)
All of these are

in gmpy package

5. Furer (2007): Θ n log n 2O(log∗ n) where log∗ n is iterated logarithm.] times
log needs to be appl

(
ied to get a n

)
umber that is less than or equal to 1.

High Precision Division
a

We want high precision rep of
b

1• Compute high-precision rep of first
b

1 R• High-precision rep of means
b

b
b
c where R is large value s.t. it is easy to

divide by R
Ex: R = 2k for binary representations

2

Lecture 12 Numerics II 6.006 Fall 2011

Division
R

Newton’s Method for computing
b

1 b R
f(x) =

x
− zero at x =
R b

−1

()
f ′(x) =

x2

1 b
f(χi)

χi+1 = χ −
χ

= χ
i

i
f ′

i

−
R

(χ(
1 b

) 2
i)

−

(
−1/χi

)
bχ 2

i multiply
χi+1 = χi + χ 2

i
→

χi
− = 2χi
R

−
R→ easy div

Example
R 216 65536

Want = = = 13107.2
b 5 5

216

Try initial guess = 214

4

χ0 = 214 = 16384

χ1 = 2 · (16384)− 5(16384)2/65536 = 12288

χ2 = 2 · (12288)− 5(12288)2/65536 = 13056

χ3 = 2 · (13056)− 5(13056)2/65536 = 13107

Error Analysis

bχ 2

χi+1 = 2χi − i R
Assumeχi = (1 + εi)

R b
2

R b
= 2 (1 + εi)−

(
R
)

(1 + εi)
2

b R b

R
=

(
(2 + 2εi)− (1 + 2εi + ε 2

i)
b
R

=
(
1− ε 2

i

) R
= (1 + ε 2

i+1) where

)
εi+1 =

b
−εi

b

Quadratic convergence;] digits doubles at each step

One might think that the complexity of division is lg d times the complexity of
multiplication given that we will have lg dmultiplications in the lg d iterations required

3

Lecture 12 Numerics II 6.006 Fall 2011

to reach precision d. However, the complexity of division equals the complexity of
multiplication.

To understand this, assume that the complexity of multiplication is Θ(nα) for n-
digit numbers, with α ≥ 1. Division requires multiplication of different-sized numbers
at each iteration. Initially the numbers are small, and then they grow to d digits.
The number of operations in division are:

α α

c α d d· 1 + c · 2α + c · 4α + · · · + c ·
()

+ c ·
()

+ c c
4

· dα < 2
2

· dα

Complexity of Computing Square Roots

We apply a first level of Newton’s method to solve f(x) = x2 − a. Each iteration
of this first level1 requires a division. If we set the precision to d digits right from
the beginning, then convergence at the first level will require lg d iterations. This
means the complexity of computing a square root will be Θ(dα lg d) if the complexity
of multiplication is Θ(dα), given that we have shown that the complexity of division
is the same as the complexity of multiplication.

However, we can do better, if we recognize that the number of digits of precision
we need at beginning of the first level of Newton’s method starts out small and then
grows. If the complexity of a d-digit division is Θ(dα), then a similar summation to
the one above tells us that the complexity of computing square roots is Θ(dα).

Termination
χ

Iteration: χi+1 = b i + ba/χic
2

c
Do floors hurt? Does program terminate? (α and β are the fractional parts below.)
Iteration is

χi + a
χ

χi+1 = i
− α

2
− β

χ a
i +

χ α
= i − γ where γ = + β and 0 ≤ γ < 1

2 2

a+ b
Since

√ χi + a
χ

ab, i
√ √

≥ ≥ a, so subtracting γ always leaves us
2 2

≥ b ac. This
won’t stay stuck above if εi < 1 (good initial guess).

1We are calling this the first level, since Newton’s method is used within division, which would
be the second level of applying it when we are computing square roots.

4

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

