Lecture 8: Hashing I

Lecture Overview

- Dictionaries and Python
- Motivation
- Prehashing
- Hashing
- Chaining
- Simple uniform hashing
- "Good" hash functions

Dictionary Problem

Abstract Data Type (ADT) - maintain a set of items, each with a key, subject to

- insert(item): add item to set
- delete(item): remove item from set
- search(key): return item with key if it exists

We assume items have distinct keys (or that inserting new one clobbers old).
Balanced BSTs solve in $O(\lg n)$ time per op. (in addition to inexact searches like nextlargest).
Goal: $O(1)$ time per operation.

Python Dictionaries:

Items are (key, value) pairs e.g. $d=\{$ 'algorithms': 5, 'cool': 42 $\}$

$$
\begin{array}{ll}
\text { d.items() } & \rightarrow\left[\left({ }^{\prime} \text { algorithms', } 5\right),\left({ }^{\prime} \text { 'cool' }^{\prime}, 5\right)\right] \\
\text { d['cool'}] & \rightarrow 42 \\
\mathrm{~d}[42] & \rightarrow \text { KeyError } \\
\text { 'cool' in d } & \rightarrow \text { True } \\
42 \text { in d } & \rightarrow \text { False }
\end{array}
$$

Python set is really dict where items are keys (no values)

Motivation

Dictionaries are perhaps the most popular data structure in CS

- built into most modern programming languages (Python, Perl, Ruby, JavaScript, Java, C++, C\#, ...)
- e.g. best docdist code: word counts \& inner product
- implement databases: (DB_HASH in Berkeley DB)
- English word \rightarrow definition (literal dict.)
- English words: for spelling correction
- word \rightarrow all webpages containing that word
- username \rightarrow account object
- compilers \& interpreters: names \rightarrow variables
- network routers: IP address \rightarrow wire
- network server: port number \rightarrow socket/app.
- virtual memory: virtual address \rightarrow physical

Less obvious, using hashing techniques:

- substring search (grep, Google) [L9]
- string commonalities (DNA) [PS4]
- file or directory synchronization (rsync)
- cryptography: file transfer \& identification [L10]

How do we solve the dictionary problem?

Simple Approach: Direct Access Table

This means items would need to be stored in an array, indexed by key (random access)

Figure 1: Direct-access table

Problems:

1. keys must be nonnegative integers (or using two arrays, integers)
2. large key range \Longrightarrow large space - e.g. one key of 2^{256} is bad news.

2 Solutions:

Solution to 1: "prehash" keys to integers.

- In theory, possible because keys are finite \Longrightarrow set of keys is countable
- In Python: hash(object) (actually hash is misnomer should be "prehash") where object is a number, string, tuple, etc. or object implementing _-hash_- (default =id = memory address)
- In theory, $x=y \Leftrightarrow \operatorname{hash}(x)=\operatorname{hash}(y)$
- Python applies some heuristics for practicality: for example, hash($\left(\backslash 0 B^{\prime}\right)=64=$ hash(${ }^{\left(\backslash 0 \backslash 0 C^{\prime}\right)}$
- Object's key should not change while in table (else cannot find it anymore)
- No mutable objects like lists

Solution to 2: hashing (verb from French 'hache' = hatchet, \& Old High German 'happja' $=$ scythe)

- Reduce universe \mathcal{U} of all keys (say, integers) down to reasonable size m for table
- idea: $m \approx n=\#$ keys stored in dictionary
- hash function h: $\mathcal{U} \rightarrow\{0,1, \ldots, m-1\}$

Figure 2: Mapping keys to a table

- two keys $k_{i}, k_{j} \in K$ collide if $h\left(k_{i}\right)=h\left(k_{j}\right)$

How do we deal with collisions?

We will see two ways

1. Chaining: TODAY
2. Open addressing: L10

Chaining

Linked list of colliding elements in each slot of table

Figure 3: Chaining in a Hash Table

- Search must go through whole list $\mathrm{T}[\mathrm{h}(\mathrm{key})]$
- Worst case: all n keys hash to same slot $\Longrightarrow \Theta(n)$ per operation

Simple Uniform Hashing:

An assumption (cheating): Each key is equally likely to be hashed to any slot of table, independent of where other keys are hashed.

$$
\begin{aligned}
\text { let } n & =\# \text { keys stored in table } \\
m & =\# \text { slots in table } \\
\text { load factor } \alpha & =n / m=\text { expected \# keys per slot }=\text { expected length of a chain }
\end{aligned}
$$

Performance

This implies that expected running time for search is $\Theta(1+\alpha)$ - the 1 comes from applying the hash function and random access to the slot whereas the α comes from searching the list. This is equal to $O(1)$ if $\alpha=O(1)$, i.e., $m=\Omega(n)$.

Hash Functions

We cover three methods to achieve the above performance:

Division Method:

$$
h(k)=k \bmod m
$$

This is practical when m is prime but not too close to power of 2 or 10 (then just depending on low bits/digits).

But it is inconvenient to find a prime number, and division is slow.

Multiplication Method:

$$
h(k)=\left[(a \cdot k) \bmod 2^{w}\right] \gg(w-r)
$$

where a is random, k is w bits, and $m=2^{r}$.
This is practical when a is odd $\& 2^{w-1}<a<2^{w} \& a$ not too close to 2^{w-1} or 2^{w}.

Multiplication and bit extraction are faster than division.

Figure 4: Multiplication Method

Universal Hashing

[6.046; CLRS 11.3.3]

For example: $h(k)=[(a k+b) \bmod p] \bmod m$ where a and b are random $\in\{0,1, \ldots p-1\}$, and p is a large prime $(>|\mathcal{U}|)$.
This implies that for worst case keys $k_{1} \neq k_{2}$, (and for a, b choice of h):

$$
\operatorname{Pr}_{a, b}\left\{\text { event } X_{k_{1} k_{2}}\right\}=\operatorname{Pr}_{a, b}\left\{h\left(k_{1}\right)=h\left(k_{2}\right)\right\}=\frac{1}{m}
$$

This lemma not proved here
This implies that:

$$
\begin{aligned}
E_{a, b}\left[\# \text { collisions with } k_{1}\right] & =E\left[\sum_{k_{2}} X_{k_{1} k_{2}}\right] \\
& =\sum_{k_{2}} E\left[X_{k_{1} k_{2}}\right] \\
& =\sum_{k_{2}} \underbrace{\operatorname{Pr}\left\{X_{k_{1} k_{2}}=1\right\}}_{\frac{1}{m}} \\
& =\frac{n}{m}=\alpha
\end{aligned}
$$

This is just as good as above!

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

