
Lecture 8 Hashing I 6.006 Fall 2011

Lecture 8: Hashing I

Lecture Overview

• Dictionaries and Python

• Motivation

• Prehashing

• Hashing

• Chaining

• Simple uniform hashing

• “Good” hash functions

Dictionary Problem

Abstract Data Type (ADT) — maintain a set of items, each with a key, subject to

• insert(item): add item to set

• delete(item): remove item from set

• search(key): return item with key if it exists

We assume items have distinct keys (or that inserting new one clobbers old).

Balanced BSTs solve in O(lg n) time per op. (in addition to inexact searches like next-

largest).

Goal: O(1) time per operation.

Python Dictionaries:

Items are (key, value) pairs e.g. d = {‘algorithms’: 5, ‘cool’: 42}

d.items() → [(‘algorithms’, 5),(‘cool’,5)]

d[‘cool’] → 42

d[42] → KeyError

‘cool’ in d → True

42 in d → False

Python set is really dict where items are keys (no values)

1

Lecture 8 Hashing I 6.006 Fall 2011

Motivation

Dictionaries are perhaps the most popular data structure in CS

• built into most modern programming languages (Python, Perl, Ruby, JavaScript,

Java, C++, C#, . . .)

• e.g. best docdist code: word counts & inner product

• implement databases: (DB HASH in Berkeley DB)

– English word → definition (literal dict.)

– English words: for spelling correction

– word → all webpages containing that word

– username → account object

• compilers & interpreters: names → variables

• network routers: IP address → wire

• network server: port number → socket/app.

• virtual memory: virtual address → physical

Less obvious, using hashing techniques:

• substring search (grep, Google) [L9]

• string commonalities (DNA) [PS4]

• file or directory synchronization (rsync)

• cryptography: file transfer & identification [L10]

How do we solve the dictionary problem?

Simple Approach: Direct Access Table

This means items would need to be stored in an array, indexed by key (random access)

2

Lecture 8 Hashing I 6.006 Fall 2011

0

1

2

key

key

key

item

item

item
.
.
.

Figure 1: Direct-access table

Problems:

1. keys must be nonnegative integers (or using two arrays, integers)

2. large key range =⇒ large space — e.g. one key of 2256 is bad news.

2 Solutions:

Solution to 1 : “prehash” keys to integers.

• In theory, possible because keys are finite =⇒ set of keys is countable

• In Python: hash(object) (actually hash is misnomer should be “prehash”) where

object is a number, string, tuple, etc. or object implementing hash (default = id

= memory address)

• In theory, x = y ⇔ hash(x) = hash(y)

• Python applies some heuristics for practicality: for example, hash(‘\0B ’) = 64 =

hash(‘\0\0C’)

• Object’s key should not change while in table (else cannot find it anymore)

• No mutable objects like lists

Solution to 2 : hashing (verb from French ‘hache’ = hatchet, & Old High German ‘happja’

= scythe)

• Reduce universe U of all keys (say, integers) down to reasonable size m for table

• idea: m ≈ n = # keys stored in dictionary

• hash function h: U → {0, 1, . . . ,m− 1}

3

Lecture 8 Hashing I 6.006 Fall 2011

0

1

m-1
k2

3k

k1

T

h(k1) = 1

. ..
.

.
.

. . .
.

.
..

.

U
k

k

k k

k

1

2

3

4

Figure 2: Mapping keys to a table

• two keys ki, kj ∈ K collide if h(ki) = h(kj)

How do we deal with collisions?

We will see two ways

1. Chaining: TODAY

2. Open addressing: L10

Chaining

Linked list of colliding elements in each slot of table

1

.
..

.
U k

k

k k

k

1

2

3

4
k

.

.

.
4k

.
k 2

k3

h(k
1
) =

h(k2) =
h(k

4
)

Figure 3: Chaining in a Hash Table

• Search must go through whole list T[h(key)]

• Worst case: all n keys hash to same slot =⇒ Θ(n) per operation

4

Lecture 8 Hashing I 6.006 Fall 2011

Simple Uniform Hashing:

An assumption (cheating): Each key is equally likely to be hashed to any slot of table,

independent of where other keys are hashed.

letn = # keys stored in table

m = # slots in table

load factorα = n/m = expected # keys per slot = expected length of a chain

Performance

This implies that expected running time for search is Θ(1+α) — the 1 comes from applying

the hash function and random access to the slot whereas the α comes from searching the

list. This is equal to O(1) if α = O(1), i.e., m = Ω(n).

Hash Functions

We cover three methods to achieve the above performance:

Division Method:

h(k) = kmodm

This is practical when m is prime but not too close to power of 2 or 10 (then just depending

on low bits/digits).

But it is inconvenient to find a prime number, and division is slow.

Multiplication Method:

h(k) = [(a · k) mod 2w]� (w − r)

where a is random, k is w bits, and m = 2r.

This is practical when a is odd & 2w−1 < a < 2w & a not too close to 2w−1 or 2w.

Multiplication and bit extraction are faster than division.

5

Lecture 8 Hashing I 6.006 Fall 2011

w

k

ax

r

}

k

k

k

1 1 1

Figure 4: Multiplication Method

Universal Hashing

[6.046; CLRS 11.3.3]

For example: h(k) = [(ak+b) mod p] mod m where a and b are random ∈ {0, 1, . . . p−1},
and p is a large prime (> |U|).
This implies that for worst case keys k1 = k2, (and for a, b choice of h):

1
Pra,b{event Xk1k2} = Pra,b{h(k1) = h(k2)} =

m

This lemma not proved here

This implies that:

Ea,b[# collisions with k1] = E[
∑

Xk1k2]

=
∑k2

E[Xk1k2]
k2

=
∑︸Pr{Xk︷︷1k2 = 1}
k2 1

m

n
= = α

m

︸

This is just as good as above!

6

6

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

