
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 13 Searching II 6.006 Spring 2008

Lecture 13: Searching II: Breadth-First Search

and Depth-First Search

Lecture Overview: Search 2 of 3

Breadth-First Search •

Shortest Paths •

• Depth-First Search

• Edge Classification

Readings

CLRS 22.2-22.3

Recall:

graph search: explore a graph

e.g., find a path from start vertices to a desired vertex

adjacency lists: array Adj of | V | linked lists

• for each vertex u�V, Adj[u] stores u’s neighbors, i.e. {v�V | (u, v)�E}
v - just outgoing edges if directed

a

b c

a

b

c

c

c

b

a

Adj

Figure 1: Adjacency Lists

1

Lecture 13	 Searching II 6.006 Spring 2008

. . .
level Ø

s

level 1
level 2

last level

Figure 2: Breadth-First Search

Breadth-first Search (BFS):

See Figure 2
Explore graph level by level from S

•	 level φ = {s}

•	 level i = vertices reachable by path of i edges but not fewer

•	 build level i > 0 from level i − 1 by trying all outgoing edges, but ignoring vertices
from previous levels

BFS (V,Adj,s):
level = { s: φ }
parent = {s : None }
i = 1
frontier = [s] � previous level, i − 1
while frontier:

next = [] � next level, i
for u in frontier:

for v in Adj [u]:
if v not in level: � not yet seen

level[v] = i � = level[u] + 1
parent[v] = u
next.append(v)

frontier = next
i + = 1

2

�

�

Lecture 13	 Searching II 6.006 Spring 2008

Example:

a s d f

vcxz

1 Ø 2 3

322 1

level Ø
level 1

level 2 level 3

frontierØ = {s}
frontier1 = {a, x}
frontier2 = {z, d, c}
frontier3 = {f, v}
(not x, c, d)

Figure 3: Breadth-First Search Frontier

Analysis:

•	 vertex V enters next (& then frontier)

only once (because level[v] then set)

base case: v = s

= Adj[v] looped through only once • ⇒

time =
�

Adj[V] =
| E | for directed graphs

v�V

| |
2 | E | for undirected graphs

•	 O(E) time
- O(V + E) to also list vertices unreachable from v (those still not assigned level)
“LINEAR TIME”

Shortest Paths:

•	 for every vertex v, fewest edges to get from s to v is

level[v] if v assigned level
∞ else (no path)

•	 parent pointers form shortest-path tree = union of such a shortest path for each v
= to find shortest path, take v, parent[v], parent[parent[v]], etc., until s (or None) ⇒

3

Lecture 13 Searching II 6.006 Spring 2008

Depth-First Search (DFS):

This is like exploring a maze.

s

Figure 4: Depth-First Search Frontier

• follow path until you get stuck

• backtrack along breadcrumbs until reach unexplored neighbor

• recursively explore

parent = {s: None}

DFS-visit (V, Adj, s):
 for v in Adj [s]:
 if v not in parent:
 parent [v] = s
 DFS-visit (V, Adj, v)

DFS (V, Adj)
 parent = { }
 for s in V:
 if s not in parent:
 parent [s] = None
 DFS-visit (V, Adj, s)

}}
search from
start vertex s
(only see
stuff reachable
from s)

explore
entire graph

(could do same
to extend BFS)

Figure 5: Depth-First Search Algorithm

4

•	 �

Lecture 13	 Searching II 6.006 Spring 2008

Example:

1

3

2 6

back edge

7

5

4

8

back
edge

forward
edge

cross edge

a b c

d e f

S1 S2

Figure 6: Depth-First Traversal

Edge Classification:

back edge: to ancestor

forward edge: to descendant
cross edge (to another subtree)

tree edges (formed by parent)
nontree edges

Figure 7: Edge Classification

To compute this classification, keep global time counter and store time interval during
which each vertex is on recursion stack.

Analysis:

DFS-visit gets called with a vertex s only once (because then parent[s] set)
= ⇒ time in DFS-visit = | Adj[s] |= O(E)

s�V

•	 DFS outer loop adds just O(V)

= O(V + E) time (linear time)
⇒

5

