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PROFESSOR: Good morning, everybody. All right, I ended up the last lecture talking about how to

calculate the absolute goodness of fit using something called the coefficient of

determination. It's usually spelled as R-squared, or R2. And the formula was quite

simple.

We measure the goodness of the fit as R-squared equals 1 minus the estimated

error divided by the measured variance. As I observed, R-squared always lies

between 0 and 1. If R-squared equals 1, that means that the model that we

constructed, the predicted values if you will, explains all of the variability in the data

so that any change in the data is explained perfectly by the model. We don't usually

get 1. In fact, if I ever got 1, I would think somebody cheated me.

R-squared equals 0, or conversely, it means there's no linear relationship at all

between the values predicted by the model and the actual data. That is to say, the

model is totally worthless. So we have code here, the top of the screen, showing

how easy it is to compute R-squared. And for those of you who have a little trouble

interpreting the formula, because maybe you're not quite sure what EE and MV

mean, this will give you a very straightforward way to understand it.

So now, we can run it. We can get some answers. So if we look at it, you'll

remember last time, we looked at two different fits. We looked at a quadratic fit and

a linear fit for the trajectory of an arrow fired from my bow. And we can now

compare the two.

And not surprisingly, given what we know about the physics of projectiles, we see it

is exactly what we'd expect, that the linear fit has an R-quared of 0.0177, showing

that, in fact, it explains almost none of the data. Whereas the quadratic fit has a
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really astonishingly good R-squared of 0.98, saying that almost all of the changes in

the values of the variables, that is to say the way the y value changes with respect

to the x value, is explained by the model. i.e., we have a really good model of the

physical situation. Very comforting.

Essentially, it's telling us at less than 2% of the variation is explained by the linear

model, 98% by the quadratic model. Presumably the other 2% is experimental error.

Well, now that we know that we have a really good model of the data, we can ask

the question, why do we care?

We have the data itself. What's the point of building a model of the data? And that,

of course, is what we're getting when we run polyfit to get this curve. The whole

purpose of creating a model, or an important purpose of creating a model, is to be

able to answer questions about the actual physical situation.

So one of the questions one might ask, for example, about firing an arrow is, how

fast is it going? That's kind of a useful thing to know if you're worried about whether

it will penetrate a target and kill somebody on the other side, for example. We can't

answer that question directly looking at the data points. You look at the data. Well, I

don't know.

But we can use the model to answer the question. And that's an exercise I want to

go through now to show you the interplay between models, and theory, and

computation, and how we can use the three to answer relevant questions about

data. No, I do not want to check for new software, thank you. In fact, let's make sure

it won't do that anymore.

So let's look at the PowerPoint. So here, we'll see how I'm using a little bit of theory,

not very much, to be able to understand how to use the model to compute the

speed of the arrow. So what we see is we know by our model, and by the good fit,

that the trajectory is given by y equals ax-squared plus bx plus c. We know that.

We also know from looking at this equation that the highest point, which I'll call

yPeak, of the arrow must occur at xMid, the middle of the x-axis. So if we look at a
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parabola, and it doesn't matter what the parabola is, we always know that the

vertical peak is halfway along the x-axis. The math tells us that from the equation.

So we can say yPeak is x times xMid squared plus b times xMid plus c. So now, we

have a model that we can tell how high the arrow can get. The next question I'll ask

is if I fired the arrow from here, and it hits the target here-- I've exaggerated by it

this way. It's nowhere near this steep. How long does it take to get from here to

here?

We don't have anything about time in our data. Yet, I claim we have enough

information to go from the distance here and the distance here to how long it's

going to take the arrow to get from here to the target. Why do I know that? What

determines how long it's going to take to get from here to here? It's going to be how

long it takes it to fall that far. It's going to be gravity.

Because we know that gravity, at least on this planet, is a constant or close enough

to it. Unless maybe the arrow were going a million miles. And it's going to be gravity

that tells me how long it takes to get from here to here. And when it gets to the

bottom, it's going to be here,

So again, I can use some very simple math and say that the time will be the square

root of 2 times the yPeak divided by the gravitational constant. Because I know that

however long it takes to get from this height to this height is going to be the same

time it takes to get from this point to this point. And that will therefore let me

compute the average speed from here to here. And once I know that, I'm done.

Now again, this is assuming no drag and things like that. The thing that we always

have to understand about a model is no model is actually ever correct. On the other

hand, many models are very useful and they're close enough to correct. So I left out

things like gravity, wind shear and stuff like that. But in fact, the answer we get here

will turn out to be very close to correct.

We can now go back and look at some code. Get rid of this. And so now, you'll see

this on the handout. I'm going to just write a little bit of code that just goes through
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the math I just showed you to compute the average x velocity. Got a print statement

here I use to debug it. And I'm going to return it. And then, we'll just be able to run it

and see what we get.

Well, all right, that we looked at before. I forgot to close the previous figure. So now,

I'm sure this is a problem you've all seen. And we'll fix it the way we always fix

things, just start over.

I'll bet you guys have also seen this happen. What this is suggesting, as we've seen

before, is that the process, the old process, still exists. Not a good thing. Again, I'm

sure you've all seen these. Let's make sure we don't have anything running here

that looks like IDLE. We don't. Just takes it a little time. There it is, all right.

All right, now we'll go back. All of this happened because I forgot to close the figure

and executed pyLab.show twice, which we know can lead to bad things. So let's get

rid of this. Now, we'll run it.

And now, we have our figure just using the quadratic fit. And we see that the speed

is 136.25 feet per second. Do I believe 136.25? Not really. I know it's the ballpark. I

confused precision with accuracy here by giving you it to two decimal places. I can

compute it as precisely as I want. But that doesn't mean it's actually accurate.

Probably, I should have just said it's about 135 or something like that. But it's pretty

good. And for those of who don't know how to do this arithmetic in your head like

me, this is about 93 miles per hour. And for comparison, the speed of sound,

instead of 136 feet per second, is 1,100 feet per second. So it's traveling pretty fast.

Well, what's the point of this? I don't really care if you know how fast an arrow

travels. I don't expect you'll ever need to compute that. But I wanted to show you

this as an example of a pattern that we use a lot. So what we did is we started with

an experiment. You didn't see this, but I actually stood in my backyard and shot a

bunch of arrows and measured them, got real data out of that. And this gave me

some data about the behavior of a physical system.

That's what I get for wearing a tie. Maybe it'll be quieter if I put it in my shirt.
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Actually, it looks silly. Excuse me. I hope none of you will mind if I take my tie off? It

seems to be making noises in the microphone. Maybe we should write a

computation. All right, so ends my experiment with trying to look dignified. Not

something I'm good at.

OK, had an experiment. That gave us some data. We then use computation to both

find and very importantly evaluate a model. It's no good just to find the model. You

need to do some evaluation to convince yourself that it's a good model of the actual

physical system. And then, finally, we use some theory and analysis and

computation to derive the consequence of the model.

And then, since we believe the accuracy of the model, we assume this consequence

was also a true fact about the physical system we started with. This is a pattern that

we see over and over again these days in all branches of science and engineering.

And it's just the kind of thing that you should get used to doing. It is what you will do

if you go onto a career in science or engineering.

OK, that's all I want to say now about the topic of data and experiments and

analysis. We will return to this topic of interpretation of data later in the semester

near the end when we start talking about machine learning and clustering. But for

now, I want to pull back and start down a new track that will, I'm sure you'll be

pleased to hear, dovetail nicely with the next few problem sets that you're going to

have to work on.

What I want to talk about is the topic of optimization. Not so much optimization in the

sense of how do you make a program fast, though we will talk a little about that, but

what people refer to as optimization problems. How do we write programs to find

optimal solutions to problems that occur in real life?

Every optimization problem we'll look at is going to have two parts. There's going to

be (1) an objective function that will either be maximized or minimized. So for

example, I might want to find the minimal air fare between Boston and Istanbul. Or

more likely, the minimum bus fare between Boston and New York. So there's an

objective function. Sometimes, you find the least. Sometimes, you find the most.
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Maybe I want to maximize my income.

And (2) a set of constraints that have to be satisfied. So maybe I want to find the

minimum transportation, minimum cost transportation between Boston and New

York subject to the constraint that it not take more than eight hours or some such

thing. So the objective function that you're minimizing or maximizing, and some set

of constraints that must be obeyed.

A vast number of problems of practical importance can be formulated this way.

Once we've formulated in this systematic way, we can then think about how to

attack them with a computation that will help us solve the problem. You guys do this

all the time.

I heard a talk yesterday by Jeremy Wertheimer, an MIT graduate, who founded a

company called ITA. If you ever use Kayak, for example, or many of these systems

to find an airline fare, they use some of Jeremy's code and algorithms to solve

these various optimization problems like this. If you've ever used Google or Bing,

they solve optimization problems to decide what pages to show you. They're all over

the place.

There are a lot of classic optimization problems that people have worked on for

decades. What we often do when confronted with a new problem, and it's

something you'll get some experience on in problem sets, is take a seemingly new

problem and map it onto a classic problem, and then use one of the classic

solutions. So we'll go through this section of the course. And we'll look at a number

of classic optimization problems. And then, you can think about how you would map

other problems onto those.

This is the process known as problem reduction, where we take a problem and map

it onto an existing problem that we already know how to solve. I'm not going to go

through a list of classic optimization problems right now. But we'll see a bunch of

them as we go forward.

Now, an important thing to think about when we think about optimization problems is
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how long, how hard, they are to solve. So far, we have looked at problems that, for

the most part, have pretty fast solutions, often sub-linear, binary search, sometimes

linear, and at worst case, low-order polynomials.

Optimization problems, as we'll see, are typically much worse than that. In fact, what

we'll see is there is often no computationally efficient way to solve them. And so we

end up dealing with approximate solutions to them, or what people might call best

effort solutions. And we see that as an increasing trend in tackling problems. All

right, enough of this abstract stuff. Let's look at an example.

So one of the classic optimization problems is called the knapsack problem. People

know what a knapsack is? Sort of an archaic term. Today, people would use the

word backpack. But in the old days, they called them knapsacks when they started

looking at these things. And the problem is also discussed in the context of a burglar

or various kinds of thieves.

So it's not easy being a burglar, by the way. I don't know if any of you ever tried it.

You've got some of the obvious problems, like making sure the house is empty and

picking locks, circumventing alarms, et cetera. But one of the really hard problems a

burglar has to deal with is deciding what to steal. Because you break into the typical

luxury home-- and why would you break into a poor person's house if you were a

burglar-- there's usually far more to steal than you can carry away.

And so the problem is formulated in terms of the burglar having a backpack. They

can put a certain amount of stuff in it. And they have to maximize the value of what

they steal subject to the constraint of how much weight they can actually carry. So

it's a classic optimization problem. And people have worked for years at how to

solve it, not so much because they want to be burglars. But as you'll see, these

kinds of optimization problems are actually quite common. So let's look at an

example.

You break into the house. And among other things, you have a choice of what to

steal. You have a rather strange looking clock, some artwork, a book, a Velvet Elvis

in case you lean in that direction, all sorts of things. And for some reason, the owner
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was nice enough to leave you information about how much everything cost and how

much it weighed. So you find this piece of paper. And now, you're trying to decide

what to steal based upon this in a way to maximize your value.

How do we go about doing it? Oh, I should show you, by the way. There's a picture

of a typical knapsack. All right, it's almost Easter, after all. Well, the simplest solution

is probably a greedy algorithm. And we'll talk a lot about greedy algorithms because

they are very popular and often the right way to tackle a hard problem.

So the notion of a greedy algorithm is it's iterative. And at each step, you pick the

locally optimal solution. So you make the best choice, put that item in the knapsack.

Ask if you have room, if you're out of weight. If not, you make the best choice of the

remaining ones. Ask the same question. You do that until you can't fit anything else

in.

Now of course, to do that, that assumes that we know at each stage what we mean

by locally optimal. And of course, we have choices here. We're trying to figure out,

in some sense, what greedy algorithm, what approach to being greedy, will give us

the best result.

So one could, for example, say, all right. At each step, I'll choose the most valuable

item and put that in my knapsack. And I'll do that till I run out of valuable items. Or,

you could, at each step, say, well, what I'm really going to choose is the one that

weights the least. That will give me the most items. And maybe that will give me the

most total value when I'm done. Or maybe, at each step, you could say, well, let me

choose the one that has the best value to weight ratio and put that in. And maybe

that will give me the best solution.

As we will see, in this case, none of those is guaranteed to give you the best

solution all the time. In fact, as we'll see, none of them is guaranteed to be better

than any of the others all the time. And that's one of the issues with greedy

algorithms.

I should point out, by the way, that this version of the knapsack problem that we're
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talking about is typically called the 0/1 knapsack problem. And that's because we

either have to take the entire item or none of the item. We're not allowed to cut the

Velvet Elvis in half and take half of it.

This is in contrast to the continuous knapsack problem. If you imagine you break

into the house and you see a barrel of gold dust, and a barrel of silver dust, and a

barrel of raisins, what you would do is you would fill your knapsack with as much

gold as you could carry, or until you ran out of gold. And then, you would fill it with

as much silver as you could carry. And then, if there's any room left, you'd put in the

raisins.

For the continuous knapsack problem, a greedy algorithm provides an optimal

solution. Unfortunately, most of the problems we actually encounter in life, as we'll

see, are 0/1 knapsack problems. You either take something or you don't. And that's

more complicated.

All right, let's look at some code. So I'm going to formulate it. I'm first going to start

by putting in a class, just so the rest of my code is simpler. This is something we've

been talking about, that increasingly people want to start by putting in some useful

data abstractions. So I've got a class item where I can put in the item. I can get its

name. I get its value. I can get its weight. And I can print it. Kind of a boring class,

but useful to have.

Then, I'm going to use this class to build items. And in this case, I'm going to build

the items based upon what we just looked at, the table that-- I think it's in your hand

out. And it's also on this slide. Later, if we want, we can have a randomized program

to build up a much bigger choice of items. But here, we'll just try the clock, the

painting, the radio, the vase, the book, and the computer.

Now comes the interesting part. I've written a function, greedy, that takes three

arguments-- the set of items that I have to choose from, makes sense, the

maximum weight the burglar can carry. And there's something called key function,

which is defining essentially what I mean by locally optimal.
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Then, it's quite simple. I'm going to sort the items using the key function.

Remember, sort has this optional argument that says, what's the ordering? So

maybe I'll order it by value. Maybe I'll order it by density. Maybe I'll order it by

weight. I'm going to reverse it, because I want the most valuable first, not the least

valuable, for example.

And then, I'm going to just take the first thing on my list until I run out of weight, and

then I'm done. And I'll return the result and the total value. To make life simple, I'm

going to define some functions. These are the functions that I can use for the

ordering. Value, which is just return the value of the item. The inverse of the weight,

because I'm thinking, as a greedy algorithm, I'll take the lightest, not the heaviest.

And since I'm reversing it, I want to do the inverse. And the density, which is just the

value divided by the weight. OK, make sense to everybody? You with me? Speak

now, or not.

And then, we'll test it. So again, kind of a theme of this part of the course. As we

write these more complex programs, we tend to have to worry about our test

harnesses. So I've got a function that tests the greedy algorithm, and then another

function that tests all three greedy approaches-- the one algorithm with different

functions-- and looks at what our results are. So let's run it.

See what we get. Oh, you know what I did? Just the same thing I did last time. But

this time, I'm going to be smarter. We're going to get rid of this figure and comment

out the code that generated it. And now, we'll test the greedy algorithms.

So we see the items we had to choose from, which I printed using the string function

and items. And if I use greedy by value to fill a knapsack of size 20, we see that I

end up getting just the computer if I do greedy by value. This is for the nerd burglar.

If I use weight, I get a different-- I get more things, not surprisingly -- but lower

value. And if I use density, I also get four things, but four different things, and I get a

higher value. So I see that I can run these greedy algorithms. I can get an answer.

But it's not always the same answer.
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As I said earlier, greedy by density happens to work best here. But you shouldn't

assume that will always be the case. I'm sure you can all imagine a different

assignment of weights and values that would make greedy by density give you a

bad answer.

All right, before we talk about how good these answers are-- and we will come back

to that as, in particular, suppose I want the best answer-- I want to stop for a minute

and talk about the algorithmic efficiency of the greedy algorithm. So let's go back

and look at the code. And this is why people use greedy algorithms. Actually, there

are two reasons. One reason is that they're easy to program, and that's always a

good thing. And the other is that they are typically highly efficient.

So what's the efficiency of this? How would we think about the efficiency of this

greedy algorithm? What are we looking at here?

Well, the first thing we have to ask is, what's the first thing it does? It sorts the list,

right? So one thing that governs the efficiency might be the amount of time it takes

to sort the list of items. Well, we know how long that takes. Or we can speculate at

least. And let's assume it does something like merge sort. So what's that term going

to be? Order what? Len of items times what? Log n, right?

So maybe that's going to tell us the complexity, but maybe not. The next thing we

have to do is look at the while loop and see how many times are we going through

the while loop. What's the worst case? Somebody? I know I didn't bring any candy

today, but you could answer the question anyway. Be a sport. Do it for free. Yeah?

AUDIENCE: The length of the items.

PROFESSOR: Well, we know this one is bigger. So it looks like that's the complexity, right? So we

can say, all right, pretty good. Slightly worse than linear in the length of the items,

but not bad at all. And that's a big attraction of greedy algorithms. They are typically

order length of items, or order length of items times the log of the length. So greedy

algorithms are usually very close to linear. And that's why we really like them.

Why we don't like them is it may be that the accumulation of a sequence of locally
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optimal solutions does not yield a globally optimal solution. So now, let's ask the

question, suppose that's not good enough. I have a very demanding thief. Or

maybe the thief works for a very demanding person and needs to choose the

absolute optimal set.

Let's think first about how we formulate that carefully. And then, what the complexity

of solving it would be. And then, algorithms that might be useful.

Again, the important step here, I think, is not the solution to the problem, but the

process used to formulate the problem. Often, it is the case that once one has done

a careful formulation of a problem, it becomes obvious how to solve it, at least in a

brute force way. So now, let's look at a formalization of the 0/1 knapsack problem.

And it's a kind of formalization we'll use for a lot of problems.

So step one, we'll represent each item by a pair. Because in fact, in deciding

whether or not to take an item, we don't care what its name. We don't care if it's a

clock, or a radio, or whatever. What matters is what's its value and what's its weight.

We'll write W as the maximum weight that the thief can carry, or that can fit in the

knapsack. So far, so good. Nothing complicated there.

Now comes the interesting step. We're going to represent the set of available items

as a vector. We'll call it I. And then we'll have another vector, V, which indicates

whether or not each item in I has been taken. So V is a vector. And if V_i is equal to

1, that implies I_i-- big I sub little i-- has been taken, is in the knapsack. Conversely,

if V_i is 0, it means I_i is not in the knapsack.

So having formulated the situation thusly, we can now go back to our notion of an

optimization problem as an objective function and a set of constraints to carefully

state the problem. So for the objective function, we want to maximize the sum of V_i

times I_i dot value, where i ranges over the length of the vectors.

So that's the trick of the 0/1. If I don't take it, it's 0. So it's 0 times the value. If I take

it, it's 1 times the value. So this is going to give me the sum of the values of the

items I've taken. And then, I have this subject to the constraint. And again, we'll do a
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summation. And it will look very similar. V_i times I_i, but this time, dot weight is less

than or equal to W.

Straightforward, but a useful kind of skill. And people do spend a lot of time on doing

that. If you've ever used MATLAB, you know it wants everything to be a vector. And

that's often because a lot of these problems can be nicely formulated in this kind of

way. All right, now let's return to the question of complexity.

What happens if we implement this in the most straightforward way? What would

the most straightforward implementation look like? Well, we could enumerate all

possibilities and then choose the best that meets the constraint. So this would be

the obvious brute force solution to the optimization problem. Look at all possible

solutions. Choose the best one.

I think you can see immediately that this is guaranteed to give you the optimal

solution. Actually, an optimal solution. Maybe there's more than one best. But in that

case, you can just choose whichever one you like or whichever comes first, for

example. The question is, how long will this take to run?

Well, we can think about that by asking the question, how big will this set be? How

many possibilities are there? Well, we can think about that in a pretty

straightforward way because if we look at our formulation, we can ask ourselves,

how many possible vectors are there? How many vector V's could there be which

shows which items were taken and which weren't? And what's the answer to that?

Well, if we have n items, how long will V be? Length n, right? 0, 1 for each. If we

have a vector of 0's and 1''s of length n, how many different values can that vector

take on? We asked this question before. What's the answer? Somebody shout it

out. I've got a vector of length n. Every value in the vector is either a 0 or a 1. So

maybe it looks something like this. How many possible combinations of (0, 1)'s are

there?

AUDIENCE: 2 to the n?

PROFESSOR: 2 to the n. Because essentially, this is a binary number, exactly. And so if I had an
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n-bit binary number, I can represent 2 to the n different values. And so we see that

we have 2 to the n possible combinations to look at if we use a brute force solution.

How bad is this? Well, if the number of items is small, it's not so bad. And you'll see

that, in fact, I can run this on the example we've looked. 2 to the 5 is not a huge

number. Suppose I have a different number.

Suppose I have 50 items to choose from. Not a big problem. I heard yesterday that

the number of different airfares between two cities in the US is order of 500 -- 500

different airfares between, say, Boston and Chicago. So looking at the best there

might be 2 to the 500, kind of a bigger number. Let's look at 2 to the 50.

Let's say there were 50 items to choose from in this question. And let's say for the

sake of argument, it takes a microsecond, one millionth of a second, to generate a

solution. How long will it take to solve this problem in a brute force way for 50 items?

Who thinks you can do it in under four seconds? How about under four minutes?

Wow, skeptics. Four hours? That's a lot of computation.

Four hours, you're starting to get some people. Four days? All right. Well, how

about four years? Still longer, just under four decades? Looking at one choice every

microsecond, it takes you roughly 36 years to evaluate all these possibilities.

Certainly for people of my age, that's not a practical solution to have to wait 36

years for an answer. So we have to find something better. And we'll be talking about

that later.
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