
MIT 6.035
Introduction to Program Analysis 

and Optimization

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology



Program Analysis
Compile-time reasoning about run-time behavior 

of program
– Can discover things that are always true:

• “x is always 1 in the statement y = x + z”
• “the pointer p always points into array a”
• “the statement return 5 can never execute”

– Can infer things that are likely to be true:
• “the reference r usually refers to an object of class C”
• “the statement a = b + c appears to execute more 

frequently than the statement x = y + z”

– Distinction between data and control-flow properties



Transformations
• Use analysis results to transform program
• Overall goal: improve some aspect of program
• Traditional goals: 

– Reduce number of executed instructions
– Reduce overall code size

• Other goals emerge as space becomes more complex
– Reduce number of cycles

• Use vector or DSP instructions
• Improve instruction or data cache hit rate

– Reduce power consumption
– Reduce memory usage



Control Flow Graph

• Nodes Represent Computation
– Each Node is a Basic Block
– Basic Block is a Sequence of Instructions with

• No Branches Out Of Middle of Basic Block
• No Branches Into Middle of Basic Block
• Basic Blocks should be maximal

– Execution of basic block starts with first instruction
– Includes all instructions in basic block

• Edges Represent Control Flow



Control Flow Graph s = 0;
a = 4;
i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;
i = i + 1;

return s;

into add(n, k) { 
s = 0; a = 4; i = 0;
if (k == 0) b = 1;
else b = 2;
while (i < n) { 

s = s + a*b;
i = i + 1;

}
return s;

}



Basic Block Construction

• Start with instruction control-flow graph
• Visit all edges in graph
• Merge adjacent nodes if

– Only one edge from first node
– Only one edge into second node

s = 0;

a = 4;

s = 0;
a = 4;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;

s = 0;
a = 4;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;

s = 0;
a = 4;
i = 0;



s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;

s = 0;
a = 4;
i = 0;

k == 0



s = 0;
a = 4;
i = 0;

k == 0

b = 2;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;
i = i + 1;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;



s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;
i = i + 1;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;
a = 4;
i = 0;

k == 0

b = 2;

i < n

s = s + a*b;
i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;
a = 4;
i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;
i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;
a = 4;
i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;
i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



s = 0;
a = 4;
i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;
i = i + 1;

return s;

s = 0;

a = 4;

i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;
return s;



Program Points, Split and Join 
Points

• One program point before and after each statement in 
program

• Split point has multiple successors – conditional 
branch statements only split points

• Merge point has multiple predecessors
• Each basic block

– Either starts with a merge point or its predecessor 
ends with a split point

– Either ends with a split point or its successor starts 
with a merge point



Two Kinds of Variables

• Temporaries Introduced By Compiler
– Transfer values only within basic block
– Introduced as part of instruction flattening
– Introduced by optimizations/transformations
– Typically assigned to only once

• Program Variables
– Declared in original program
– May be assigned to multiple times
– May transfer values between basic blocks



Basic Block Optimizations

• Common Sub-
Expression Elimination
– a = (x+y)+z; b = x+y; 
– t = x+y; a = t+z; b = t;

• Constant Propagation
– x = 5; b = x+y;
– b = 5+y;

• Algebraic Identities
– a = x * 1;
– a = x;

• Copy Propagation
– a = x+y; b = a; c = b+z;
– a = x+y; b = a; c = a+z;

• Dead Code Elimination
– a = x+y; b = a; c = a+z;
– a = x+y; c = a+z 

• Strength Reduction
– t = i * 4;
– t = i << 2;



Basic Block Analysis Approach
• Assume normalized basic block - all statements are 

of the form
– var = var op var (where op is a binary operator)
– var = op var (where op is a unary operator)
– var = var

• Simulate a symbolic execution of basic block
– Reason about values of variables (or other 

aspects of computation)
– Derive property of interest



Value Numbering
• Reason about values of variables and expressions in 

the program
– Simulate execution of basic block
– Assign virtual value to each variable and expression

• Discovered property: which variables and expressions 
have the same value

• Standard use: 
– Common subexpression elimination
– Typically combined with transformation that

• Saves computed values in temporaries
• Replaces expressions with temporaries when 

value of expression previously computed



New Basic
Block

a = x+y
b = a+z
b = b+y
c = a+z

Original Basic
Block a = x+y

t1 = a
b = a+z
t2 = b
b = b+y
t3 = b
c = t2Var to Val

b → v5b → v6

x → v1
y → v2
a → v3
z → v4

c → v5

Exp to Val Exp to Tmp
v1+v2 → v3 v1+v2 → t1

v3+v4 → t2
v5+v2 → t3

v3+v4 → v5
v5+v2 → v6



Value Numbering Summary
• Forward symbolic execution of basic block
• Each new value assigned to temporary

– a = x+y; becomes a = x+y; t = a;
– Temporary preserves value for use later in program even if 

original variable rewritten
• a = x+y; a = a+z; b = x+y becomes
• a = x+y; t = a; a = a+z; b = t;

• Maps
– Var to Val – specifies symbolic value for each variable
– Exp to Val – specifies value of each evaluated expression
– Exp to Tmp – specifies tmp that holds value of each 

evaluated expression



Map Usage
• Var to Val 

– Used to compute symbolic value of y and z when 
processing statement of form x = y + z

• Exp to Tmp
– Used to determine which tmp to use if value(y) + 

value(z) previously computed when processing 
statement of form x = y + z

• Exp to Val
– Used to update Var to Val when 

• processing statement of the form x = y + z, and
• value(y) + value(z) previously computed



Interesting Properties
• Finds common subexpressions even if they use 

different variables in expressions
– y = a+b; x = b; z = a+x becomes
– y = a+b; t = y; x = b; z = t
– Why? Because computes with symbolic values

• Finds common subexpressions even if variable that 
originally held the value was overwritten
– y = a+b; x = b; y = 1; z = a+x becomes
– y = a+b; t = y; x = b; y = 1; z = t
– Why? Because saves values away in temporaries



One More Interesting Property

• Flattening and CSE combine to capture partial and 
arbitrarily complex common subexpressions
– w = (a+b)+c; x = b; y = (a+x)+c; z = a+b;
– After flattening:
– t1 = a+b; w = t1+c; x = b; t2 = a+x; y = t2 + c; z = a+b;
– CSE algorithm notices that 

• t1+c and t2+c compute same value
• In the statement z = a+b, a+b has already been computed so 

generated code can reuse the result

– t1=a+b; w = t1+c; t3 = w; x = b; t2=a+x; y = t3; z = t1; 



Problems

• Algorithm has a temporary for each new value
– a = x+y; t1 = a;

• Introduces
– lots of temporaries
– lots of copy statements to temporaries

• In many cases, temporaries and copy statements 
are unnecessary

• So we eliminate them with copy propagation 
and dead code elimination



Copy Propagation

• Once again, simulate execution of program
• If can, use original variable instead of temporary

– a = x+y; b = x+y;
– After CSE becomes a = x+y; t = a; b = t;
– After CP becomes a = x+y; b = a;

• Key idea: 
– determine when original variable is NOT overwritten 

between its assignment statement and the use of the 
computed value

– If not overwritten, use original variable



Copy Propagation Maps

• Maintain two maps 
– tmp to var: tells which variable to use instead of a 

given temporary variable
– var to set: inverse of tmp to var. tells which temps 

are mapped to a given variable by tmp to var



Copy Propagation Example
• Original

a = x+y
b = a+z
c = x+y
a = b

• After CSE
a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

• After CSE and Copy 
Propagation
a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a

a = x+y
t1 = a

tmp to var var to set
t1 → a a →{t1}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

a = x+y
t1 = a
b = a+z
t2 = b

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

var to set

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

tmp to var
t1 → a
t2 → b

a →{t1}
b →{t2}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

var to set

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

tmp to var
t1 → t1
t2 → b

a →{}
b →{t2}



Dead Code Elimination

• Copy propagation keeps all temps around
• May be temps that are never read
• Dead Code Elimination removes them

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

a = x+y
b = a+z
c = a
a = b

Basic Block After 
CSE and Copy Prop

Basic Block After 
CSE and Copy Prop



Dead Code Elimination

• Basic Idea
– Process Code In Reverse Execution Order
– Maintain a set of variables that are needed later in 

computation
– If encounter an assignment to a temporary that is 

not needed, remove assignment



Basic Block After 
CSE and Copy Prop

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Needed Set
{b}



Basic Block After 
CSE and Copy Prop

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Needed Set
{a, b}



Basic Block After 
CSE and Copy Prop

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Needed Set
{a, b}



Basic Block After 
CSE and Copy Prop

a = x+y
t1 = a
b = a+z

c = a
a = b

Needed Set
{a, b}



Basic Block After 
CSE and Copy Prop

a = x+y
t1 = a
b = a+z

c = a
a = b

Needed Set
{a, b, z}



Basic Block After 
CSE and Copy Prop

a = x+y
t1 = a
b = a+z

c = a
a = b

Needed Set
{a, b, z}



Basic Block After 
CSE and Copy Prop

a = x+y

b = a+z

c = a
a = b

Needed Set
{a, b, z}



Basic Block After , CSE Copy Propagation,
and Dead Code Elimination

a = x+y

b = a+z

c = a
a = b

Needed Set
{a, b, z}



Basic Block After , CSE Copy Propagation,
and Dead Code Elimination

a = x+y

b = a+z

c = a
a = b

Needed Set
{a, b, z}



Interesting Properties

• Analysis and Transformation Algorithms 
Symbolically Simulate Execution of Program
– CSE and Copy Propagation go forward
– Dead Code Elimination goes backwards

• Transformations stacked
– Group of basic transformations work together
– Often, one transformation creates inefficient code 

that is cleaned up by following transformations
– Transformations can be useful even if original code 

may not benefit from transformation



Other Basic Block Transformations

• Constant Propagation
• Strength Reduction

– a << 2 = a * 4; a + a + a = 3 * a;
• Algebraic Simplification

– a = a * 1; b = b + 0; 
• Do these in unified transformation framework, 

not in earlier or later phases



Summary
• Basic block analyses and transformations
• Symbolically simulate execution of program

– Forward (CSE, copy prop, constant prop)
– Backward (Dead code elimination)

• Stacked groups of analyses and transformations that 
work together
– CSE introduces excess temporaries and copy statements
– Copy propagation often eliminates need to keep temporary 

variables around
– Dead code elimination removes useless code

• Similar in spirit to many analyses and transformations 
that operate across basic blocks


	Program Analysis
	Transformations
	Control Flow Graph
	Control Flow Graph
	Basic Block Construction
	Program Points, Split and Join Points
	Two Kinds of Variables
	Basic Block Optimizations
	Basic Block Analysis Approach
	Value Numbering
	Value Numbering Summary
	Map Usage
	Interesting Properties
	One More Interesting Property
	Problems
	Copy Propagation
	Copy Propagation Maps
	Copy Propagation Example
	Dead Code Elimination
	Dead Code Elimination
	Interesting Properties
	Other Basic Block Transformations
	Summary

