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Program Analysis
Compile-time reasoning about run-time behavior 

of program
– Can discover things that are always true:

• “x is always 1 in the statement y = x + z”
• “the pointer p always points into array a”
• “the statement return 5 can never execute”

– Can infer things that are likely to be true:
• “the reference r usually refers to an object of class C”
• “the statement a = b + c appears to execute more 

frequently than the statement x = y + z”

– Distinction between data and control-flow properties



Transformations
• Use analysis results to transform program
• Overall goal: improve some aspect of program
• Traditional goals: 

– Reduce number of executed instructions
– Reduce overall code size

• Other goals emerge as space becomes more complex
– Reduce number of cycles

• Use vector or DSP instructions
• Improve instruction or data cache hit rate

– Reduce power consumption
– Reduce memory usage



Control Flow Graph

• Nodes Represent Computation
– Each Node is a Basic Block
– Basic Block is a Sequence of Instructions with

• No Branches Out Of Middle of Basic Block
• No Branches Into Middle of Basic Block
• Basic Blocks should be maximal

– Execution of basic block starts with first instruction
– Includes all instructions in basic block

• Edges Represent Control Flow



Control Flow Graph s = 0;
a = 4;
i = 0;

k == 0

b = 1;b = 2;

i < n

s = s + a*b;
i = i + 1;

return s;

into add(n, k) { 
s = 0; a = 4; i = 0;
if (k == 0) b = 1;
else b = 2;
while (i < n) { 

s = s + a*b;
i = i + 1;

}
return s;

}



Basic Block Construction

• Start with instruction control-flow graph
• Visit all edges in graph
• Merge adjacent nodes if

– Only one edge from first node
– Only one edge into second node
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Program Points, Split and Join 
Points

• One program point before and after each statement in 
program

• Split point has multiple successors – conditional 
branch statements only split points

• Merge point has multiple predecessors
• Each basic block

– Either starts with a merge point or its predecessor 
ends with a split point

– Either ends with a split point or its successor starts 
with a merge point



Two Kinds of Variables

• Temporaries Introduced By Compiler
– Transfer values only within basic block
– Introduced as part of instruction flattening
– Introduced by optimizations/transformations
– Typically assigned to only once

• Program Variables
– Declared in original program
– May be assigned to multiple times
– May transfer values between basic blocks



Basic Block Optimizations

• Common Sub-
Expression Elimination
– a = (x+y)+z; b = x+y; 
– t = x+y; a = t+z; b = t;

• Constant Propagation
– x = 5; b = x+y;
– b = 5+y;

• Algebraic Identities
– a = x * 1;
– a = x;

• Copy Propagation
– a = x+y; b = a; c = b+z;
– a = x+y; b = a; c = a+z;

• Dead Code Elimination
– a = x+y; b = a; c = a+z;
– a = x+y; c = a+z 

• Strength Reduction
– t = i * 4;
– t = i << 2;



Basic Block Analysis Approach
• Assume normalized basic block - all statements are 

of the form
– var = var op var (where op is a binary operator)
– var = op var (where op is a unary operator)
– var = var

• Simulate a symbolic execution of basic block
– Reason about values of variables (or other 

aspects of computation)
– Derive property of interest



Value Numbering
• Reason about values of variables and expressions in 

the program
– Simulate execution of basic block
– Assign virtual value to each variable and expression

• Discovered property: which variables and expressions 
have the same value

• Standard use: 
– Common subexpression elimination
– Typically combined with transformation that

• Saves computed values in temporaries
• Replaces expressions with temporaries when 

value of expression previously computed



New Basic
Block

a = x+y
b = a+z
b = b+y
c = a+z

Original Basic
Block a = x+y

t1 = a
b = a+z
t2 = b
b = b+y
t3 = b
c = t2Var to Val

b → v5b → v6

x → v1
y → v2
a → v3
z → v4

c → v5

Exp to Val Exp to Tmp
v1+v2 → v3 v1+v2 → t1

v3+v4 → t2
v5+v2 → t3

v3+v4 → v5
v5+v2 → v6



Value Numbering Summary
• Forward symbolic execution of basic block
• Each new value assigned to temporary

– a = x+y; becomes a = x+y; t = a;
– Temporary preserves value for use later in program even if 

original variable rewritten
• a = x+y; a = a+z; b = x+y becomes
• a = x+y; t = a; a = a+z; b = t;

• Maps
– Var to Val – specifies symbolic value for each variable
– Exp to Val – specifies value of each evaluated expression
– Exp to Tmp – specifies tmp that holds value of each 

evaluated expression



Map Usage
• Var to Val 

– Used to compute symbolic value of y and z when 
processing statement of form x = y + z

• Exp to Tmp
– Used to determine which tmp to use if value(y) + 

value(z) previously computed when processing 
statement of form x = y + z

• Exp to Val
– Used to update Var to Val when 

• processing statement of the form x = y + z, and
• value(y) + value(z) previously computed



Interesting Properties
• Finds common subexpressions even if they use 

different variables in expressions
– y = a+b; x = b; z = a+x becomes
– y = a+b; t = y; x = b; z = t
– Why? Because computes with symbolic values

• Finds common subexpressions even if variable that 
originally held the value was overwritten
– y = a+b; x = b; y = 1; z = a+x becomes
– y = a+b; t = y; x = b; y = 1; z = t
– Why? Because saves values away in temporaries



One More Interesting Property

• Flattening and CSE combine to capture partial and 
arbitrarily complex common subexpressions
– w = (a+b)+c; x = b; y = (a+x)+c; z = a+b;
– After flattening:
– t1 = a+b; w = t1+c; x = b; t2 = a+x; y = t2 + c; z = a+b;
– CSE algorithm notices that 

• t1+c and t2+c compute same value
• In the statement z = a+b, a+b has already been computed so 

generated code can reuse the result

– t1=a+b; w = t1+c; t3 = w; x = b; t2=a+x; y = t3; z = t1; 



Problems

• Algorithm has a temporary for each new value
– a = x+y; t1 = a;

• Introduces
– lots of temporaries
– lots of copy statements to temporaries

• In many cases, temporaries and copy statements 
are unnecessary

• So we eliminate them with copy propagation 
and dead code elimination



Copy Propagation

• Once again, simulate execution of program
• If can, use original variable instead of temporary

– a = x+y; b = x+y;
– After CSE becomes a = x+y; t = a; b = t;
– After CP becomes a = x+y; b = a;

• Key idea: 
– determine when original variable is NOT overwritten 

between its assignment statement and the use of the 
computed value

– If not overwritten, use original variable



Copy Propagation Maps

• Maintain two maps 
– tmp to var: tells which variable to use instead of a 

given temporary variable
– var to set: inverse of tmp to var. tells which temps 

are mapped to a given variable by tmp to var



Copy Propagation Example
• Original

a = x+y
b = a+z
c = x+y
a = b

• After CSE
a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

• After CSE and Copy 
Propagation
a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a

a = x+y
t1 = a

tmp to var var to set
t1 → a a →{t1}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

a = x+y
t1 = a
b = a+z
t2 = b

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a

a = x+y
t1 = a
b = a+z
t2 = b
c = t1

tmp to var var to set
t1 → a
t2 → b

a →{t1}
b →{t2}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

var to set

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

tmp to var
t1 → a
t2 → b

a →{t1}
b →{t2}



Copy Propagation Example
Basic Block After 

CSE and Copy Prop
Basic Block
After CSE

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

var to set

a = x+y
t1 = a
b = a+z
t2 = b
c = t1
a = b

tmp to var
t1 → t1
t2 → b

a →{}
b →{t2}



Dead Code Elimination

• Copy propagation keeps all temps around
• May be temps that are never read
• Dead Code Elimination removes them

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

a = x+y
b = a+z
c = a
a = b

Basic Block After 
CSE and Copy Prop

Basic Block After 
CSE and Copy Prop



Dead Code Elimination

• Basic Idea
– Process Code In Reverse Execution Order
– Maintain a set of variables that are needed later in 

computation
– If encounter an assignment to a temporary that is 

not needed, remove assignment



Basic Block After 
CSE and Copy Prop

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Needed Set
{b}



Basic Block After 
CSE and Copy Prop

a = x+y
t1 = a
b = a+z
t2 = b
c = a
a = b

Needed Set
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Basic Block After , CSE Copy Propagation,
and Dead Code Elimination

a = x+y

b = a+z

c = a
a = b

Needed Set
{a, b, z}



Basic Block After , CSE Copy Propagation,
and Dead Code Elimination

a = x+y

b = a+z

c = a
a = b

Needed Set
{a, b, z}



Interesting Properties

• Analysis and Transformation Algorithms 
Symbolically Simulate Execution of Program
– CSE and Copy Propagation go forward
– Dead Code Elimination goes backwards

• Transformations stacked
– Group of basic transformations work together
– Often, one transformation creates inefficient code 

that is cleaned up by following transformations
– Transformations can be useful even if original code 

may not benefit from transformation



Other Basic Block Transformations

• Constant Propagation
• Strength Reduction

– a << 2 = a * 4; a + a + a = 3 * a;
• Algebraic Simplification

– a = a * 1; b = b + 0; 
• Do these in unified transformation framework, 

not in earlier or later phases



Summary
• Basic block analyses and transformations
• Symbolically simulate execution of program

– Forward (CSE, copy prop, constant prop)
– Backward (Dead code elimination)

• Stacked groups of analyses and transformations that 
work together
– CSE introduces excess temporaries and copy statements
– Copy propagation often eliminates need to keep temporary 

variables around
– Dead code elimination removes useless code

• Similar in spirit to many analyses and transformations 
that operate across basic blocks
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