MIT 6.035
 Foundations of Dataflow Analysis

Martin Rinard

Laboratory for Computer Science Massachusetts Institute of Technology

Dataflow Analysis

- Compile-Time Reasoning About
- Run-Time Values of Variables or Expressions
- At Different Program Points
- Which assignment statements produced value of variable at this point?
- Which variables contain values that are no longer used after this program point?
- What is the range of possible values of variable at this program point?

Program Representation

- Control Flow Graph
- Nodes N - statements of program
- Edges E - flow of control
- $\operatorname{pred}(\mathrm{n})=$ set of all predecessors of n
- $\operatorname{succ}(\mathrm{n})=$ set of all successors of n
- Start node n_{0}
- Set of final nodes $\mathrm{N}_{\text {final }}$

Program Points

- One program point before each node
- One program point after each node
- Join point - point with multiple predecessors
- Split point - point with multiple successors

Basic Idea

- Information about program represented using values from algebraic structure called lattice
- Analysis produces lattice value for each program point
- Two flavors of analysis
- Forward dataflow analysis
- Backward dataflow analysis

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
- Each node has a transfer function f
- Input - value at program point before node
- Output - new value at program point after node
- Values flow from program points after predecessor nodes to program points before successor nodes
- At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
- Each node has a transfer function f
- Input - value at program point after node
- Output - new value at program point before node
- Values flow from program points before successor nodes to program points after predecessor nodes
- At split points, values are combined using a merge function
- Canonical Example: Live Variables

Partial Orders

- Set P
- Partial order \leq such that $\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{P}$
$-\mathrm{x} \leq \mathrm{x}$
(reflexive)
$-\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$ implies $\mathrm{x}=\mathrm{y} \quad$ (asymmetric)
$-\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$ implies $\mathrm{x} \leq \mathrm{z} \quad$ (transitive)
- Can use partial order to define
- Upper and lower bounds
- Least upper bound
- Greatest lower bound

Upper Bounds

- If $S \subseteq P$ then
$-x \in P$ is an upper bound of S if $\forall y \in S . y \leq x$
$-x \in P$ is the least upper bound of S if
- x is an upper bound of S, and
- $\mathrm{x} \leq \mathrm{y}$ for all upper bounds y of S
$-\vee$ - join, least upper bound, lub, supremum, sup
- $\vee \mathrm{S}$ is the least upper bound of S
- $x \vee y$ is the least upper bound of $\{x, y\}$

Lower Bounds

- If $\mathrm{S} \subseteq \mathrm{P}$ then
$-x \in P$ is a lower bound of S if $\forall y \in S$. $x \leq y$
$-x \in P$ is the greatest lower bound of S if
- x is a lower bound of S, and
- $y \leq x$ for all lower bounds y of S
$-\wedge$ - meet, greatest lower bound, glb, infimum, inf
- $\wedge S$ is the greatest lower bound of S
- $\mathrm{x} \wedge \mathrm{y}$ is the greatest lower bound of $\{\mathrm{x}, \mathrm{y}\}$

Covering

- $\mathrm{x}<\mathrm{y}$ if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{x} \neq \mathrm{y}$
- x is covered by y (y covers x) if
$-\mathrm{x}<\mathrm{y}$, and
$-\mathrm{x} \leq \mathrm{z}<\mathrm{y}$ implies $\mathrm{x}=\mathrm{z}$
- Conceptually, y covers x if there are no elements between x and y

Example

- $\mathrm{P}=\{000,001,010,011,100,101,110,111\}$
(standard boolean lattice, also called hypercube)
- $x \leq y$ if $(x$ bitwise and $y)=x$

Hasse Diagram

- If y covers x
- Line from y to x
- y above x in diagram

Lattices

- If $x \wedge y$ and $x \vee y$ exist for all $x, y \in P$, then P is a lattice.
- If $\wedge S$ and $\vee S$ exist for all $S \subseteq P$, then P is a complete lattice.
- All finite lattices are complete

Jattices

- If $x \wedge y$ and $x \vee y$ exist for all $x, y \in P$, then P is a lattice.
- If $\wedge \mathrm{S}$ and $\vee \mathrm{S}$ exist for all $\mathrm{S} \subseteq \mathrm{P}$, then P is a complete lattice.
- All finite lattices are complete
- Example of a lattice that is not complete
- Integers I
- For any $x, y \in I, x \vee y=\max (x, y), x \wedge y=\min (x, y)$
- But $\vee I$ and $\wedge I$ do not exist
- I $\cup\{+\infty,-\infty\}$ is a complete lattice

Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom (\perp)

Connection Between \leq, \wedge, and \vee

- The following 3 properties are equivalent:
$-\mathrm{x} \leq \mathrm{y}$
$-x \vee y=y$
$-x \wedge y=x$
- Will prove:
$-x \leq y$ implies $x \vee y=y$ and $x \wedge y=x$
$-x \vee y=y$ implies $x \leq y$
$-x \wedge y=x$ implies $x \leq y$
- Then by transitivity, can obtain
$-x \vee y=y$ implies $x \wedge y=x$
$-x \wedge y=x$ implies $x \vee y=y$

Connecting Lemma Proofs

- Proof of $x \leq y$ implies $x \vee y=y$
$-\mathrm{x} \leq \mathrm{y}$ implies y is an upper bound of $\{\mathrm{x}, \mathrm{y}\}$.
- Any upper bound z of $\{\mathrm{x}, \mathrm{y}\}$ must satisfy $\mathrm{y} \leq \mathrm{z}$.
- So y is least upper bound of $\{x, y\}$ and $x \vee y=y$
- Proof of $x \leq y$ implies $x \wedge y=x$
$-\mathrm{x} \leq \mathrm{y}$ implies x is a lower bound of $\{\mathrm{x}, \mathrm{y}\}$.
- Any lower bound z of $\{\mathrm{x}, \mathrm{y}\}$ must satisfy $\mathrm{z} \leq \mathrm{x}$.
- So x is greatest lower bound of $\{x, y\}$ and $x \wedge y=x$

Connecting Lemma Proofs

- Proof of $x \vee y=y$ implies $x \leq y$
-y is an upper bound of $\{\mathrm{x}, \mathrm{y}\}$ implies $\mathrm{x} \leq \mathrm{y}$
- Proof of $x \wedge y=x$ implies $x \leq y$
-x is a lower bound of $\{\mathrm{x}, \mathrm{y}\}$ implies $\mathrm{x} \leq \mathrm{y}$

Lattices as Algebraic Structures

- Have defined \vee and \wedge in terms of \leq
- Will now define \leq in terms of \vee and \wedge
- Start with \vee and \wedge as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
- Will define \leq using \vee and \wedge
- Will show that \leq is a partial order
- Intuitive concept of \vee and \wedge as information combination operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations \vee and \wedge such that
$-(x \vee y) \vee z=x \vee(y \vee z) \quad$ (associativity of $\vee)$
$-(x \wedge y) \wedge z=x \wedge(y \wedge z) \quad$ (associativity of $\wedge)$
$-x \vee y=y \vee x$
(commutativity of \vee)
$-x \wedge y=y \wedge x$
$-\mathrm{x} \vee \mathrm{x}=\mathrm{x}$
$-\mathrm{x} \wedge \mathrm{X}=\mathrm{x}$
$-x \vee(x \wedge y)=x$
(absorption of \vee over \wedge)
$-x \wedge(x \vee y)=x$
(absorption of \wedge over \vee)

Connection Between \wedge and \vee

- $x \vee y=y$ if and only if $x \wedge y=x$
- Proof of $x \vee y=y$ implies $x=x \wedge y$

$$
\begin{aligned}
\mathrm{x} & =\mathrm{x} \wedge(\mathrm{x} \vee \mathrm{y}) & & \text { (by absorption) } \\
& =\mathrm{x} \wedge \mathrm{y} & & \text { (by assumption) }
\end{aligned}
$$

- Proof of $x \wedge y=x$ implies $y=x \vee y$

$$
\begin{aligned}
y & =y \vee(y \wedge x) & & \text { (by absorption) } \\
& =y \vee(x \wedge y) & & \text { (by commutativity) } \\
& =y \vee x & & \text { (by assumption) } \\
& =x \vee y & & \text { (by commutativity) }
\end{aligned}
$$

Properties of \leq

- Define $x \leq y$ if $x \vee y=y$
- Proof of transitive property. Must show that

$$
\begin{aligned}
& \mathrm{x} \vee \mathrm{y}=\mathrm{y} \text { and } \mathrm{y} \vee \mathrm{z}=\mathrm{z} \text { implies } \mathrm{x} \vee \mathrm{z}=\mathrm{z} \\
& \begin{aligned}
& \mathrm{x} \vee \mathrm{z}=\mathrm{x} \vee(\mathrm{y} \vee \mathrm{z}) \\
& \text { (by assumption) } \\
&=(\mathrm{x} \vee \mathrm{y}) \vee \mathrm{z} \text { (by associativity) } \\
&=\mathrm{y} \vee \mathrm{z} \\
&=\mathrm{z} \\
& \text { (by assumption) } \\
& \text { (by assumption) }
\end{aligned}
\end{aligned}
$$

Properties of \leq

- Proof of asymmetry property. Must show that

$$
\begin{array}{rlrl}
\mathrm{x} \vee \mathrm{y} & =\mathrm{y} \text { and } \mathrm{y} \vee \mathrm{x}=\mathrm{x} \text { implies } \mathrm{x}=\mathrm{y} \\
\mathrm{x} & =\mathrm{y} \vee \mathrm{x} & & \text { (by assumption) } \\
& =\mathrm{x} \vee \mathrm{y} & & \text { (by commutativity) } \\
& =y & & \text { (by assumption) }
\end{array}
$$

- Proof of reflexivity property. Must show that

$$
\begin{aligned}
x \vee x & =x \\
x \vee x & =x \quad \text { (by idempotence) }
\end{aligned}
$$

Properties of \leq

- Induced operation \leq agrees with original definitions of \vee and \wedge, i.e.,

$$
\begin{aligned}
& -x \vee y=\sup \{x, y\} \\
& -x \wedge y=\inf \{x, y\}
\end{aligned}
$$

Proof of $x \vee y=\sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \vee u=u$ and $y \vee u=u$, must show

$$
\begin{array}{rlrl}
x \vee y & \leq u, \text { i.e., }(x \vee y) \vee u=u \\
u & =x \vee u & & \text { (by assumption) } \\
& =x \vee(y \vee u) & & \text { (by assumption) } \\
& =(x \vee y) \vee u & & \text { (by associativity) }
\end{array}
$$

Proof of $x \wedge y=\inf \{x, y\}$

- Consider any lower bound 1 for x and y.
- Given $x \wedge 1=1$ and $y \wedge 1=1$, must show $1 \leq x \wedge y$, i.e., $(x \wedge y) \wedge 1=1$

$$
\begin{aligned}
1 & =x \wedge 1 \\
& =x \wedge(y \wedge 1) \\
& =(x \wedge y) \wedge 1
\end{aligned}
$$

(by assumption)
(by assumption)
(by associativity)

Chains

- A set S is a chain if $\forall x, y \in S . y \leq x$ or $x \leq y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_{1} \leq x_{2} \leq \ldots$ there exists n such that $X_{n}=x_{n+1}=\ldots$

Application to Dataflow Analysis

- Dataflow information will be lattice values
- Transfer functions operate on lattice values
- Solution algorithm will generate increasing sequence of values at each program point
- Ascending chain condition will ensure termination
- Will use \vee to combine values at control-flow join points

Transfer Functions

- Transfer function $\mathrm{f}: \mathrm{P} \rightarrow \mathrm{P}$ for each node in control flow graph
- f models effect of the node on the program information

Transfer Functions

Each dataflow analysis problem has a set F of transfer functions f: $\mathrm{P} \rightarrow \mathrm{P}$

- Identity function $\mathrm{i} \in \mathrm{F}$
- F must be closed under composition: $\forall \mathrm{f}, \mathrm{g} \in \mathrm{F}$. the function $\mathrm{h}=\lambda \mathrm{x} . \mathrm{f}(\mathrm{g}(\mathrm{x})) \in \mathrm{F}$
- Each $\mathrm{f} \in \mathrm{F}$ must be monotone:

$$
\mathrm{x} \leq \mathrm{y} \text { implies } \mathrm{f}(\mathrm{x}) \leq \mathrm{f}(\mathrm{y})
$$

- Sometimes all $f \in F$ are distributive:

$$
f(x \vee y)=f(x) \vee f(y)
$$

- Distributivity implies monotonicity

Distributivity Implies Monotonicity

- Proof of distributivity implies monotonicity
- Assume $f(x \vee y)=f(x) \vee f(y)$
- Must show: $x \vee y=y$ implies $f(x) \vee f(y)=f(y)$

$$
\begin{array}{rlrl}
f(y) & =f(x \vee y) \quad \text { (by assumption) } \\
& =f(x) \vee f(y) & \text { (by distributivity) }
\end{array}
$$

Putting Pieces Together

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control

Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node n, have
- in_{n} - value at program point before n
- out ${ }_{n}$ - value at program point after n
$-\mathrm{f}_{\mathrm{n}}$ - transfer function for n (given $^{\mathrm{n}_{\mathrm{n}}}$, computes out t_{n})
- Require that solution satisfy
$-\forall \mathrm{n}$. out $_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right)$
$-\forall \mathrm{n} \neq \mathrm{n}_{\mathrm{o}} . \mathrm{in}_{\mathrm{n}}=\vee\left\{\right.$ out $_{\mathrm{m}} \cdot \mathrm{m}$ in $\left.\operatorname{pred}(\mathrm{n})\right\}$
$-\mathrm{in}_{\mathrm{n} 0}=\mathrm{I}$
- Where I summarizes information at start of program

Dataflow Equations

- Compiler processes program to obtain a set of dataflow equations

$$
\begin{aligned}
& \text { out }_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right) \\
& \mathrm{in}_{\mathrm{n}}:=\mathrm{V}\left\{\text { out }_{\mathrm{m}} \cdot \mathrm{~m} \text { in } \operatorname{pred}(\mathrm{n})\right\}
\end{aligned}
$$

- Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward Dataflow Equations

for each n do out $\mathrm{n}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}(\perp)$
$\mathrm{in}_{\mathrm{n} 0}:=\mathrm{I}$; out $\mathrm{n}_{\mathrm{n} 0}:=\mathrm{f}_{\mathrm{n} 0}(\mathrm{I})$
worklist $:=\mathrm{N}-\left\{\mathrm{n}_{0}\right\}$
while worklist $\neq \varnothing$ do
remove a node n from worklist $\mathrm{in}_{\mathrm{n}}:=\vee\left\{\operatorname{out}_{\mathrm{m}} \cdot \mathrm{m}\right.$ in $\left.\operatorname{pred}(\mathrm{n})\right\}$ out $_{n}:=\mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right)$
if out ${ }_{n}$ changed then worklist := worklist \cup succ(n)

Correctness Argument

- Why result satisfies dataflow equations
- Whenever process a node n, set out ${ }_{n}:=f_{n}\left(\mathrm{in}_{\mathrm{n}}\right)$ Algorithm ensures that out ${ }_{n}=f_{n}\left(\mathrm{in}_{\mathrm{n}}\right)$
- Whenever out t_{m} changes, put succ(m) on worklist. Consider any node $\mathrm{n} \in \operatorname{succ}(\mathrm{m})$. It will eventually come off worklist and algorithm will set

$$
\mathrm{in}_{\mathrm{n}}:=\vee\left\{\text { out }_{\mathrm{m}} \cdot \mathrm{~m} \text { in } \operatorname{pred}(\mathrm{n})\right\}
$$

to ensure that $\mathrm{in}_{\mathrm{n}}=\vee\left\{\right.$ out $_{\mathrm{m}} . \mathrm{m}$ in pred(n) $\}$

- So final solution will satisfy dataflow equations

Termination Argument

- Why does algorithm terminate?
- Sequence of values taken on by in_{n} or out in a chain. If values stop increasing, worklist empties and algorithm terminates.
- If lattice has ascending chain property, algorithm terminates
- Algorithm terminates for finite lattices
- For lattices without ascending chain property, use widening operator

Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
- Lattice is set of all subsets of integers
- Could be used to collect possible values taken on by variable during execution of program
- Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)

Reaching Definitions

- $\mathrm{P}=$ powerset of set of all definitions in program (all subsets of set of definitions in program)
- $\vee=\cup($ order is $\subseteq)$
- $\perp=\varnothing$
- $\mathrm{I}=\mathrm{in}_{\mathrm{n} 0}=\perp$
- $\mathrm{F}=$ all functions f of the form $\mathrm{f}(\mathrm{x})=\mathrm{a} \cup(\mathrm{x}-\mathrm{b})$
- b is set of definitions that node kills
- a is set of definitions that node generates
- General pattern for many transfer functions
- $\mathrm{f}(\mathrm{x})=$ GEN $\cup(\mathrm{x}$-KILL)

Does Reaching Definitions

Framework Satisfy Properties?

- \subseteq satisfies conditions for \leq
$-\mathrm{x} \subseteq \mathrm{y}$ and $\mathrm{y} \subseteq \mathrm{z}$ implies $\mathrm{x} \subseteq \mathrm{z}$ (transitivity)
$-\mathrm{x} \subseteq \mathrm{y}$ and $\mathrm{y} \subseteq \mathrm{x}$ implies $\mathrm{y}=\mathrm{x}$ (asymmetry)
$-\mathrm{x} \subseteq \mathrm{x}$ (idempotence)
- F satisfies transfer function conditions
$-\lambda \mathrm{x} . \varnothing \cup(\mathrm{x}-\varnothing)=\lambda \mathrm{x} . \mathrm{x} \in \mathrm{F}$ (identity)
- Will show $f(x \cup y)=f(x) \cup f(y)$ (distributivity)

$$
\begin{aligned}
f(x) \cup f(y) & =(a \cup(x-b)) \cup(a \cup(y-b)) \\
& =a \cup(x-b) \cup(y-b)=a \cup((x \cup y)-b) \\
& =f(x \cup y)
\end{aligned}
$$

Does Reaching Definitions

Framework Satisfy Properties?

- What about composition?
- Given $\mathrm{f}_{1}(\mathrm{x})=\mathrm{a}_{1} \cup\left(\mathrm{x}-\mathrm{b}_{1}\right)$ and $\mathrm{f}_{2}(\mathrm{x})=\mathrm{a}_{2} \cup\left(\mathrm{x}-\mathrm{b}_{2}\right)$
- Must show $f_{1}\left(f_{2}(x)\right)$ can be expressed as $a \cup(x-b)$

$$
\begin{aligned}
\mathrm{f}_{1}\left(\mathrm{f}_{2}(\mathrm{x})\right) & =\mathrm{a}_{1} \cup\left(\left(a_{2} \cup\left(x-b_{2}\right)\right)-\mathrm{b}_{1}\right) \\
& =\mathrm{a}_{1} \cup\left(\left(a_{2}-b_{1}\right) \cup\left(\left(x-b_{2}\right)-b_{1}\right)\right) \\
& \left.=\left(a_{1} \cup\left(a_{2}-b_{1}\right)\right) \cup\left(\left(x-b_{2}\right)-b_{1}\right)\right) \\
& =\left(a_{1} \cup\left(a_{2}-b_{1}\right)\right) \cup\left(x-\left(b_{2} \cup b_{1}\right)\right)
\end{aligned}
$$

- Let $\mathrm{a}=\left(\mathrm{a}_{1} \cup\left(\mathrm{a}_{2}-\mathrm{b}_{1}\right)\right)$ and $\mathrm{b}=\mathrm{b}_{2} \cup \mathrm{~b}_{1}$
- Then $f_{1}\left(f_{2}(x)\right)=a \cup(x-b)$

General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Distributivity
- Composition

Properties

Available Expressions

- $\mathrm{P}=$ powerset of set of all expressions in program (all subsets of set of expressions)
- $\vee=\cap$ (order is \supseteq)
- $\perp=\mathrm{P}$
- $\mathrm{I}=\mathrm{in}_{\mathrm{n} 0}=\varnothing$
- $\mathrm{F}=$ all functions f of the form $\mathrm{f}(\mathrm{x})=\mathrm{a} \cup(\mathrm{x}-\mathrm{b})$
- b is set of expressions that node kills
- a is set of expressions that node generates
- Another GEN/KILL analysis

Concept of Conservatism

- Reaching definitions use \cup as join
- Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
- Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node n, have
$-i \mathrm{n}_{\mathrm{n}}$ - value at program point before n
- out ${ }_{n}$ - value at program point after n
$-\mathrm{f}_{\mathrm{n}}$ - transfer function for n (given out t_{n}, computes in_{n})
- Require that solution satisfies
$-\forall \mathrm{n} . \mathrm{in}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}}\left(\right.$ out $\left._{\mathrm{n}}\right)$
$-\forall \mathrm{n} \notin \mathrm{N}_{\text {final }}$. out $_{\mathrm{n}}=\vee\left\{\mathrm{in}_{\mathrm{m}} \cdot \mathrm{m}\right.$ in $\left.\operatorname{succ}(\mathrm{n})\right\}$
$-\forall \mathrm{n} \in \mathrm{N}_{\text {final }}=$ out $_{\mathrm{n}}=\mathrm{O}$
- Where O summarizes information at end of program

Worklist Algorithm for Solving Backward Dataflow Equations

for each n do $\mathrm{in}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}(\perp)$
for each $\mathrm{n} \in \mathrm{N}_{\text {final }}$ do out $\mathrm{t}_{\mathrm{n}}:=\mathrm{O} ; \mathrm{in}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}(\mathrm{O})$
worklist := N - $\mathrm{N}_{\text {final }}$
while worklist $\neq \varnothing$ do
remove a node n from worklist
out $_{\mathrm{n}}:=\vee\left\{\mathrm{in}_{\mathrm{m}} \cdot \mathrm{m}\right.$ in $\left.\operatorname{succ}(\mathrm{n})\right\}$
$\mathrm{in}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}\left(\right.$ out $\left._{\mathrm{n}}\right)$
if in_{n} changed then worklist := worklist \cup pred(n)

Live Variables

- $\mathrm{P}=$ powerset of set of all variables in program (all subsets of set of variables in program)
- $\vee=\cup$ (order is \subseteq)
- $\perp=\varnothing$
- $\mathrm{O}=\varnothing$
- $\mathrm{F}=$ all functions f of the form $\mathrm{f}(\mathrm{x})=\mathrm{a} \cup(\mathrm{x}-\mathrm{b})$
- b is set of variables that node kills
- a is set of variables that node reads

Meaning of Dataflow Results

- Concept of program state s for control-flow graphs
- Program point n where execution located (n is node that will execute next)
- Values of variables in program
- Each execution generates a trajectory of states:
$-\mathrm{s}_{0} ; \mathrm{S}_{1} ; \ldots ; \mathrm{s}_{\mathrm{k}}$, where each $\mathrm{s}_{\mathrm{i}} \in \mathrm{ST}$
$-\mathrm{s}_{\mathrm{i}+1}$ generated from s_{i} by executing basic block to
- Update variable values
- Obtain new program point n

Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function $\mathrm{AF}: \mathrm{ST} \rightarrow \mathrm{P}$
- Correctness condition: require that for all states s

$$
\mathrm{AF}(\mathrm{~s}) \leq \mathrm{in}_{\mathrm{n}}
$$

where n is the next statement to execute in state s

Sign Analysis Example

- Sign analysis - compute sign of each variable V
- Base Lattice: $\mathrm{P}=$ flat lattice on $\{-, 0,+\}$

- Actual lattice records a value for each variable
- Example element: $[\mathrm{a} \rightarrow+, \mathrm{b} \rightarrow 0, \mathrm{c} \rightarrow-$]

Interpretation of Lattice Values

- If value of v in lattice is:
- BOT: no information about sign of v
- -: variable v is negative
-0 : variable v is 0
-+ : variable v is positive
- TOP: v may be positive or negative
- What is abstraction function AF?
$-\operatorname{AF}\left(\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]\right)=\left[\operatorname{sign}\left(\mathrm{x}_{1}\right), \ldots, \operatorname{sign}\left(\mathrm{x}_{\mathrm{n}}\right)\right]$
- Where $\operatorname{sign}(x)=0$ if $x=0,+$ if $x>0,-$ if $x<0$

Operation \otimes on Lattice

\otimes	BOT	-	0	+	TOP
BOT	BOT	-	0	+	TOP
-	-	+	0	-	TOP
0	0	0	0	0	0
+	+	-	0	+	TOP
TOP	TOP	TOP	0	TOP	TOP

Transfer Functions

- If n of the form $v=c$

$$
-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow+] \text { if } \mathrm{c} \text { is positive }
$$

$$
-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow 0] \text { if } \mathrm{c} \text { is } 0
$$

$$
-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow-] \text { if } \mathrm{c} \text { is negative }
$$

- If n of the form $v_{1}=v_{2}^{*} v_{3}$

$$
-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}\left[\mathrm{v}_{1} \rightarrow \mathrm{x}\left[\mathrm{v}_{2}\right] \otimes \mathrm{x}\left[\mathrm{v}_{3}\right]\right]
$$

- $\mathrm{I}=\mathrm{TOP}$
(uninitialized variables may have any sign)

Example

[a-+]

Imprecision In Example

Abstraction Imprecision:
$[\mathrm{a} \rightarrow 1]$ abstracted as $[\mathrm{a} \rightarrow+$]

Control Flow Imprecision:

$$
\mathrm{c}=\mathrm{a} * \mathrm{~b}
$$

$[\mathrm{b} \rightarrow \mathrm{TOP}]$ summarizes results of all executions. In any execution state s, AF(s)[b] \neq TOP

General Sources of Imprecision

- Abstraction Imprecision
- Concrete values (integers) abstracted as lattice values (-,0, and +)
- Lattice values less precise than execution values
- Abstraction function throws away information
- Control Flow Imprecision
- One lattice value for all possible control flow paths
- Analysis result has a single lattice value to summarize results of multiple concrete executions
- Join operation \vee moves up in lattice to combine values from different execution paths
- Typically if $x \leq y$, then x is more precise than y

Why Have Imprecision

- Make analysis tractable
- Unbounded sets of values in execution
- Typically abstracted by finite set of lattice values
- Execution may visit unbounded set of states
- Abstracted by computing joins of different paths

Abstraction Function

- $\mathrm{AF}(\mathrm{s})[\mathrm{v}]=$ sign of v
$-\mathrm{AF}(\mathrm{n},[\mathrm{a} \rightarrow 5, \mathrm{~b} \rightarrow 0, \mathrm{c} \rightarrow-2])=[\mathrm{a} \rightarrow+, \mathrm{b} \rightarrow 0, \mathrm{c} \rightarrow-]$
- Establishes meaning of the analysis results
- If analysis says variable has a given sign
- Always has that sign in actual execution
- Correctness condition:
$-\forall \mathrm{v} . \mathrm{AF}(\mathrm{s})[\mathrm{v}] \leq \mathrm{in}_{\mathrm{n}}[\mathrm{v}]$ (n is node for s)
- Reflects possibility of imprecision

Abstraction Function Soundness

- Will show
$\forall \mathrm{v} . \mathrm{AF}(\mathrm{s})[\mathrm{v}] \leq \mathrm{in}_{\mathrm{n}}[\mathrm{v}]$ (n is node for s)
by induction on length of computation that produced s
- Base case:
$-\forall \mathrm{v} . \mathrm{in}_{\mathrm{n} 0}[\mathrm{v}]=\mathrm{TOP}$, which implies that $-\forall \mathrm{v} . \mathrm{AF}(\mathrm{s})[\mathrm{v}] \leq \mathrm{TOP}$

Induction Step

- Assume $\forall \mathrm{v}$. $\mathrm{AF}(\mathrm{s})[\mathrm{v}] \leq \mathrm{in}_{\mathrm{n}}[\mathrm{v}]$ for computations of length k
- Prove for computations of length $\mathrm{k}+1$
- Proof:
- Given s (state), n (node to execute next), and in_{n}
- Find p (the node that just executed), s_{p} (the previous state), and in_{p}
- By induction hypothesis $\forall \mathrm{v} . \mathrm{AF}\left(\mathrm{s}_{\mathrm{p}}\right)[\mathrm{v}] \leq \mathrm{in}_{\mathrm{p}}[\mathrm{v}]$
- Case analysis on form of n
- If n of the form $v=c$, then

$$
\begin{aligned}
& -\mathrm{s}[\mathrm{v}]=\mathrm{c} \text { and out } \mathrm{p}_{\mathrm{p}}[\mathrm{v}]=\operatorname{sign}(\mathrm{c}) \text {, so } \\
& \quad \mathrm{AF}(\mathrm{~s})[\mathrm{v}]=\operatorname{sign}(\mathrm{c})=\text { out }_{\mathrm{p}}[\mathrm{v}] \leq \mathrm{in}_{\mathrm{n}}[\mathrm{v}] \\
& - \text { If } \mathrm{x} \neq \mathrm{v}, \mathrm{~s}[\mathrm{x}]=\mathrm{s}_{\mathrm{p}}[\mathrm{x}] \text { and out }{ }_{\mathrm{p}}[\mathrm{x}]=\mathrm{in}_{\mathrm{p}}[\mathrm{x}] \text {, so } \\
& \mathrm{AF}(\mathrm{~s})[\mathrm{x}]=\mathrm{AF}\left(\mathrm{~s}_{\mathrm{p}}\right)[\mathrm{x}] \leq \mathrm{in}_{\mathrm{p}}[\mathrm{x}]=\mathrm{out}_{\mathrm{p}}[\mathrm{x}] \leq \mathrm{in}_{\mathrm{n}}[\mathrm{x}]
\end{aligned}
$$

- Similar reasoning if n of the form $v_{1}=v_{2}{ }^{*} v_{3}$

Augmented Execution States

- Abstraction functions for some analyses require augmented execution states
- Reaching definitions: states are augmented with definition that created each value
- Available expressions: states are augmented with expression for each value

Meet Over Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
- Consider a path $\mathrm{p}=\mathrm{n}_{0}, \mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}, \mathrm{n}$ to a node n (note that for all i $n_{i} \in \operatorname{pred}\left(\mathrm{n}_{\mathrm{i}+1}\right)$)
- The solution must take this path into account:

$$
\mathrm{f}_{\mathrm{p}}(\perp)=\left(\mathrm{f}_{\mathrm{nk}}\left(\mathrm{f}_{\mathrm{nk}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{n}}\right.
$$

- So the solution must have the property that $\vee\left\{\mathrm{f}_{\mathrm{p}}(\perp) \cdot \mathrm{p}\right.$ is a path to n$\} \leq \mathrm{in}_{\mathrm{n}}$ and ideally
$\vee\left\{\mathrm{f}_{\mathrm{p}}(\perp) \cdot \mathrm{p}\right.$ is a path to n$\}=\mathrm{in}_{\mathrm{n}}$

Soundness Proof of Analysis

 Algorithm

 Algorithm}

- Property to prove:

For all paths p to $\mathrm{n}, \mathrm{f}_{\mathrm{p}}(\perp) \leq \mathrm{in}_{\mathrm{n}}$

- Proof is by induction on length of p
- Uses monotonicity of transfer functions
- Uses following lemma
- Lemma:

Worklist algorithm produces a solution such that

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right)=\text { out }_{\mathrm{n}} \\
& \text { if } \mathrm{n} \in \operatorname{pred}(\mathrm{~m}) \text { then out }{ }_{\mathrm{n}} \leq \mathrm{in}_{\mathrm{m}}
\end{aligned}
$$

Proof

- Base case: p is of length 1
- Then $\mathrm{p}=\mathrm{n}_{0}$ and $\mathrm{f}_{\mathrm{p}}(\perp)=\perp=\mathrm{in}_{\mathrm{n} 0}$
- Induction step:
- Assume theorem for all paths of length k
- Show for an arbitrary path p of length $\mathrm{k}+1$

Induction Step Proof

- $\mathrm{p}=\mathrm{n}_{0}, \ldots, \mathrm{n}_{\mathrm{k}}, \mathrm{n}$
- Must show $\mathrm{f}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{n}}$
- By induction $\left(f_{k-1}\left(\ldots f_{n 1}\left(f_{n 0}(\perp)\right) \ldots\right)\right) \leq i n_{n k}$
- Apply f_{k} to both sides, by monotonicity we get $\mathrm{f}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{f}_{\mathrm{k}}\left(\mathrm{in}_{\mathrm{nk}}\right)$
- By lemma, $\mathrm{f}_{\mathrm{k}}\left(\mathrm{in}_{\mathrm{nk}}\right)=$ out $_{\mathrm{nk}}$
- By lemma, out ${ }_{n k} \leq$ in $_{n}$
- By transitivity, $\mathrm{f}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{n}}$

Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
- For all n:

$$
\vee\left\{\mathrm{f}_{\mathrm{p}}(\perp) \cdot \mathrm{p} \text { is a path to } \mathrm{n}\right\}=\mathrm{in}_{\mathrm{n}}
$$

Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

- Actual lattice records a value for each variable - Example element: $[\mathrm{a} \rightarrow 3, \mathrm{~b} \rightarrow 2, \mathrm{c} \rightarrow 5]$

Transfer Functions

- If n of the form $v=c$

$$
-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow \mathrm{c}]
$$

- If n of the form $v_{1}=v_{2}+v_{3}$
$-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}\left[\mathrm{v}_{1} \rightarrow \mathrm{x}\left[\mathrm{v}_{2}\right]+\mathrm{x}\left[\mathrm{v}_{3}\right]\right]$
- Lack of distributivity
- Consider transfer function f for $\mathrm{c}=\mathrm{a}+\mathrm{b}$
$-\mathrm{f}([\mathrm{a} \rightarrow 3, \mathrm{~b} \rightarrow 2]) \vee \mathrm{f}([\mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 3])=[\mathrm{a} \rightarrow$ TOP, $\mathrm{b} \rightarrow$ TOP, $\mathrm{c} \rightarrow 5]$
$-\mathrm{f}([\mathrm{a} \rightarrow 3, \mathrm{~b} \rightarrow 2] \vee[\mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 3])=\mathrm{f}([\mathrm{a} \rightarrow$ TOP, $\mathrm{b} \rightarrow$ TOP $])=$ $[\mathrm{a} \rightarrow$ TOP, $\mathrm{b} \rightarrow$ TOP, $\mathrm{c} \rightarrow$ TOP $]$

Lack of Distributivity Anomaly

$$
\begin{aligned}
& \rightarrow \\
& \mathrm{a}=2 \quad \mathrm{a}=3 \\
& \mathrm{~b}=3 \quad \mathrm{~b}=2 \\
& {[a \rightarrow 2, b \rightarrow 3] \quad[a \rightarrow 3, b \rightarrow 2]} \\
& {[\mathrm{a} \rightarrow \mathrm{TOP}, \mathrm{~b} \rightarrow \text { TOP }]} \\
& \text { Lack of Distributivity Imprecision: } \\
& \mathrm{c}=\mathrm{a}+\mathrm{b} \quad \begin{array}{l}
\text { Lack of } \\
{[\mathrm{a} \rightarrow \mathrm{TOP}, \mathrm{~b} \rightarrow \mathrm{TOP}, \mathrm{c} \rightarrow 5]}
\end{array} \text { more precise } \\
& {[\mathrm{a} \rightarrow \mathrm{TOP}, \mathrm{~b} \rightarrow \text { TOP, } \mathrm{c} \rightarrow \text { TOP] }}
\end{aligned}
$$

What is the meet over all paths solution?

How to Make Analysis Distributive

- Keep combinations of values on different paths

$$
\begin{array}{cc}
\mathrm{a}=2 \\
\mathrm{~b}=3
\end{array}
$$

Issues

- Basically simulating all combinations of values in all executions
- Exponential blowup
- Nontermination because of infinite ascending chains
- Nontermination solution
- Use widening operator to eliminate blowup (can make it work at granularity of variables)
- Loses precision in many cases

Multiple Fixed Points

- Dataflow analysis generates least fixed point
- May be multiple fixed points
- Available expressions example

Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic (for common sub-expression elimination)
- Assumes expressions are available at start of analysis
- Analysis eliminates all that are not available
- If analysis result $\mathrm{in}_{\mathrm{n}} \leq \mathrm{e}$, can use e for CSE
- Cannot stop analysis early and use current result
- Live variables is pessimistic (for dead code elimination)
- Assumes all variables are live at start of analysis
- Analysis finds variables that are dead
- If e \leq analysis result in_{n}, can use e for dead code elimination
- Can stop analysis early and use current result
- Formal dataflow setup same for both analyses
- Optimism/pessimism depends on intended use

Summary

- Formal dataflow analysis framework
- Lattices, partial orders
- Transfer functions, joins and splits
- Dataflow equations and fixed point solutions
- Connection with program
- Abstraction function AF: S $\rightarrow \mathrm{P}$
- For any state s and program point $\mathrm{n}, \mathrm{AF}(\mathrm{s}) \leq \mathrm{in}_{\mathrm{n}}$
- Meet over all paths solutions, distributivity

