MIT 6.035 Foundations of Dataflow Analysis

Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

Dataflow Analysis

- Compile-Time Reasoning About
- Run-Time Values of Variables or Expressions
- At Different Program Points
 - Which assignment statements produced value of variable at this point?
 - Which variables contain values that are no longer used after this program point?
 - What is the range of possible values of variable at this program point?

Program Representation

- Control Flow Graph
 - Nodes N statements of program
 - Edges E flow of control
 - pred(n) = set of all predecessors of n
 - succ(n) = set of all successors of n
 - Start node n_0
 - Set of final nodes N_{final}

Program Points

- One program point before each node
- One program point after each node
- Join point point with multiple predecessors
- Split point point with multiple successors

Basic Idea

- Information about program represented using values from algebraic structure called lattice
- Analysis produces lattice value for each program point
- Two flavors of analysis
 - Forward dataflow analysis
 - Backward dataflow analysis

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function f
 - Input value at program point before node
 - Output new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 - Input value at program point after node
 - Output new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables

Partial Orders

- Set P
- Partial order \leq such that $\forall x, y, z \in P$
 - $-x \le x$ (reflexive)
 - $-x \le y$ and $y \le x$ implies x = y
- (asymmetric)

(transitive)

- $-x \le y \text{ and } y \le z \text{ implies } x \le z$
- Can use partial order to define
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound

Upper Bounds

- If $S \subseteq P$ then
 - $-x \in P$ is an upper bound of S if $\forall y \in S. y \le x$
 - $-x \in P$ is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \le y$ for all upper bounds y of S
 - \vee join, least upper bound, lub, supremum, sup
 - $\bullet \, \lor \, S$ is the least upper bound of S
 - $x \lor y$ is the least upper bound of $\{x,y\}$

Lower Bounds

- If $S \subseteq P$ then
 - $-x \in P$ is a lower bound of S if $\forall y \in S. x \leq y$
 - $-x \in P$ is the greatest lower bound of S if
 - x is a lower bound of S, and
 - $y \le x$ for all lower bounds y of S
 - $-\wedge$ meet, greatest lower bound, glb, infimum, inf
 - \wedge S is the greatest lower bound of S
 - $x \land y$ is the greatest lower bound of $\{x,y\}$

Covering

- x < y if $x \le y$ and $x \ne y$
- x is covered by y (y covers x) if
 - -x < y, and

 $-x \le z < y$ implies x = z

• Conceptually, y covers x if there are no elements between x and y

Example

- P = { 000, 001, 010, 011, 100, 101, 110, 111 } (standard boolean lattice, also called hypercube)
- $x \le y$ if (x bitwise and y) = x

Hasse Diagram

- If y covers x
 - Line from y to x
 - y above x in diagram

Lattices

- If x ∧ y and x ∨ y exist for all x,y∈P, then P is a lattice.
- If \land S and \lor S exist for all S \subseteq P, then P is a complete lattice.
- All finite lattices are complete

Lattices

- If x ∧ y and x ∨ y exist for all x,y∈P, then P is a lattice.
- If \land S and \lor S exist for all S \subseteq P, then P is a complete lattice.
- All finite lattices are complete
- Example of a lattice that is not complete
 - Integers I
 - For any x, $y \in I$, $x \lor y = max(x,y)$, $x \land y = min(x,y)$
 - But \vee I and \wedge I do not exist
 - $I \cup \{+\infty, -\infty\}$ is a complete lattice

Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom (\bot)

Connection Between \leq , \land , and \lor

- The following 3 properties are equivalent:
 - $-x \leq y$
 - $x \lor y = y$
 - $-x \wedge y = x$
- Will prove:
 - $-x \le y$ implies $x \lor y = y$ and $x \land y = x$
 - $-x \lor y = y$ implies $x \le y$
 - $x \land y = x$ implies $x \le y$
- Then by transitivity, can obtain
 - $x \lor y = y$ implies $x \land y = x$
 - $x \land y = x$ implies $x \lor y = y$

Connecting Lemma Proofs

- Proof of $x \le y$ implies $x \lor y = y$
 - $-x \le y$ implies y is an upper bound of $\{x,y\}$.
 - Any upper bound z of $\{x,y\}$ must satisfy $y \le z$.
 - So y is least upper bound of $\{x,y\}$ and $x \lor y = y$
- Proof of $x \le y$ implies $x \land y = x$
 - $-x \le y$ implies x is a lower bound of $\{x,y\}$.
 - Any lower bound z of $\{x,y\}$ must satisfy $z \le x$.
 - So x is greatest lower bound of $\{x,y\}$ and $x \land y = x$

Connecting Lemma Proofs

• Proof of $x \lor y = y$ implies $x \le y$

- y is an upper bound of $\{x,y\}$ implies $x \le y$

- Proof of $x \wedge y = x$ implies $x \leq y$ x is a lower bound of $\{x, y\}$ implies $x \leq y$
 - -x is a lower bound of $\{x,y\}$ implies $x \le y$

Lattices as Algebraic Structures

- Have defined \lor and \land in terms of \leq
- Will now define \leq in terms of \vee and \wedge
 - Start with v and A as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 - Will define \leq using \vee and \wedge
 - Will show that \leq is a partial order
- Intuitive concept of v and A as information combination operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations \vee and \wedge such that

- $-(x \lor y) \lor z = x \lor (y \lor z)$
- $x \lor y = y \lor x$
- $x \wedge y = y \wedge x$
- $X \lor X = X$
- $-X \wedge X = X$
- $-\mathbf{x} \lor (\mathbf{x} \land \mathbf{y}) = \mathbf{x}$
- $x \wedge (x \vee y) = x$
- (associativity of \vee) $-(x \land y) \land z = x \land (y \land z)$ (associativity of \land) (commutativity of \vee) (commutativity of \wedge) (idempotence of \vee) (idempotence of \land) (absorption of \lor over \land) (absorption of \land over \lor)

Connection Between \land and \lor

- $x \lor y = y$ if and only if $x \land y = x$
- Proof of $x \lor y = y$ implies $x = x \land y$ $x = x \land (x \lor y)$ (by absorption) $= x \land y$ (by assumption)
- Proof of $x \land y = x$ implies $y = x \lor y$ $y = y \lor (y \land x)$ (by absorption) $= y \lor (x \land y)$ (by commutativity) $= y \lor x$ (by assumption) $= x \lor y$ (by commutativity)

Properties of \leq

- Define $x \le y$ if $x \lor y = y$
- Proof of transitive property. Must show that $x \lor y = y$ and $y \lor z = z$ implies $x \lor z = z$ $x \lor z = x \lor (y \lor z)$ (by assumption) $= (x \lor y) \lor z$ (by associativity) $= y \lor z$ (by assumption) = z (by assumption)

Properties of \leq

- Proof of asymmetry property. Must show that x \vee y = y and y \vee x = x implies x = y x = y \vee x (by assumption) = x \vee y (by commutativity) = y (by assumption)
- Proof of reflexivity property. Must show that
 - $\mathbf{x} \lor \mathbf{x} = \mathbf{x}$
 - $x \lor x = x$ (by idempotence)

Properties of \leq

- Induced operation ≤ agrees with original definitions of ∨ and ∧, i.e.,
 - $-x \lor y = \sup \{x, y\}$
 - $-x \wedge y = \inf \{x, y\}$

Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \le u$, i.e., $(x \lor y) \lor u = u$ $u = x \lor u$ (by assumption) $= x \lor (y \lor u)$ (by assumption) $= (x \lor y) \lor u$ (by associativity)

Proof of $x \land y = \inf \{x, y\}$

- Consider any lower bound 1 for x and y.
- Given $x \land l = l$ and $y \land l = l$, must show $l \le x \land y$, i.e., $(x \land y) \land l = l$ $l = x \land l$ (by assumption) $= x \land (y \land l)$ (by assumption) $= (x \land y) \land l$ (by associativity)

Chains

- A set S is a chain if $\forall x, y \in S. y \le x \text{ or } x \le y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_1 \le x_2 \le \dots$ there exists n such that $x_n = x_{n+1} = \dots$

Application to Dataflow Analysis

- Dataflow information will be lattice values
 - Transfer functions operate on lattice values
 - Solution algorithm will generate increasing sequence of values at each program point
 - Ascending chain condition will ensure termination
- Will use v to combine values at control-flow join points

Transfer Functions

- Transfer function f: P→P for each node in control flow graph
- f models effect of the node on the program information

Transfer Functions

Each dataflow analysis problem has a set F of transfer functions f: $P \rightarrow P$

- Identity function $i \in F$
- F must be closed under composition: $\forall f,g \in F$. the function $h = \lambda x.f(g(x)) \in F$
- Each f \in F must be monotone:

 $x \le y$ implies $f(x) \le f(y)$

- Sometimes all $f \in F$ are distributive: $f(x \lor y) = f(x) \lor f(y)$
- Distributivity implies monotonicity

Distributivity Implies Monotonicity

- Proof of distributivity implies monotonicity
- Assume $f(x \lor y) = f(x) \lor f(y)$
- Must show: $x \lor y = y$ implies $f(x) \lor f(y) = f(y)$ $f(y) = f(x \lor y)$ (by assumption) $= f(x) \lor f(y)$ (by distributivity)

Putting Pieces Together

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control

Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node n, have
 - $-in_n$ value at program point before n
 - out_n value at program point after n
 - $-f_n$ transfer function for n (given in_n, computes out_n)
- Require that solution satisfy
 - $\forall n. out_n = f_n(in_n)$
 - $\forall n \neq n_0. in_n = \lor \{ out_m . m in pred(n) \}$
 - $-in_{n0} = I$
 - Where I summarizes information at start of program

Dataflow Equations

• Compiler processes program to obtain a set of dataflow equations

 $out_n := f_n(in_n)$

 $in_n := \lor \{ out_m . m in pred(n) \}$

• Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward Dataflow Equations

for each n do out_n := $f_n(\bot)$ $in_{n0} := I; out_{n0} := f_{n0}(I)$ worklist := N - $\{n_0\}$ while worklist $\neq \emptyset$ do remove a node n from worklist $in_n := \lor \{ out_m . m in pred(n) \}$ $out_n := f_n(in_n)$ if out_n changed then worklist := worklist \cup succ(n)

Correctness Argument

- Why result satisfies dataflow equations
- Whenever process a node n, set $out_n := f_n(in_n)$ Algorithm ensures that $out_n = f_n(in_n)$
- Whenever out_m changes, put succ(m) on worklist.
 Consider any node n ∈ succ(m). It will eventually come off worklist and algorithm will set

 $in_{n} := \lor \{ out_{m} . m in pred(n) \}$ to ensure that $in_{n} = \lor \{ out_{m} . m in pred(n) \}$

• So final solution will satisfy dataflow equations
Termination Argument

- Why does algorithm terminate?
- Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, worklist empties and algorithm terminates.
- If lattice has ascending chain property, algorithm terminates
 - Algorithm terminates for finite lattices
 - For lattices without ascending chain property, use widening operator

Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)

Reaching Definitions

- P = powerset of set of all definitions in program (all subsets of set of definitions in program)
- $\lor = \bigcup$ (order is \subseteq)
- $\perp = \emptyset$
- $I = in_{n0} = \bot$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of definitions that node kills
 - a is set of definitions that node generates
- General pattern for many transfer functions $- f(x) = GEN \cup (x-KILL)$

Does Reaching Definitions Framework Satisfy Properties?

- \subseteq satisfies conditions for \leq
 - $x \subseteq y$ and $y \subseteq z$ implies $x \subseteq z$ (transitivity)
 - $-x \subseteq y$ and $y \subseteq x$ implies y = x (asymmetry) $-x \subseteq x$ (idempotence)
- F satisfies transfer function conditions
 - $-\lambda x.\emptyset \cup (x-\emptyset) = \lambda x.x \in F$ (identity)
 - Will show $f(x \cup y) = f(x) \cup f(y)$ (distributivity) $f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))$ $= a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b)$ $= f(x \cup y)$

Does Reaching Definitions Framework Satisfy Properties?

• What about composition?

- Given $f_1(x) = a_1 \cup (x-b_1)$ and $f_2(x) = a_2 \cup (x-b_2)$

- Must show $f_1(f_2(x))$ can be expressed as $a \cup (x - b)$ $f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)$

 $= \mathbf{a}_1 \cup ((\mathbf{a}_2 - \mathbf{b}_1) \cup ((\mathbf{x} - \mathbf{b}_2) - \mathbf{b}_1))$

 $= (a_1 \cup (a_2 - b_1)) \cup ((x - b_2) - b_1))$ = (a_1 \lor (a_2 - b_1)) \lor ((x - b_2) - b_1))

 $= (a_1 \cup (a_2 - b_1)) \cup (x - (b_2 \cup b_1))$

- Let a = (a₁ ∪ (a₂ - b₁)) and b = b₂ ∪ b₁ - Then f₁(f₂(x)) = a ∪ (x - b)

General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Distributivity
- Composition

Properties

Available Expressions

- P = powerset of set of all expressions in program (all subsets of set of expressions)
- $\lor = \cap$ (order is \supseteq)
- $\bot = P$
- $I = in_{n0} = \emptyset$
- F = all functions f of the form f(x) = a ∪ (x-b)
 b is set of expressions that node kills
 a is set of expressions that node generates
- Another GEN/KILL analysis

Concept of Conservatism

- Reaching definitions use \cup as join
 - Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
 - Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node n, have
 - $-in_n$ value at program point before n
 - out_n- value at program point after n
 - $-f_n$ transfer function for n (given out_n, computes in_n)
- Require that solution satisfies
 - $\forall n. in_n = f_n(out_n)$
 - $\forall n \notin N_{\text{final}}. \text{ out}_n = \lor \{ \text{ in}_m . m \text{ in succ}(n) \}$
 - $\forall n \in N_{final} = out_n = O$
 - Where O summarizes information at end of program

Worklist Algorithm for Solving **Backward Dataflow Equations** for each n do in_n := $f_n(\perp)$ for each $n \in N_{\text{final}}$ do $\text{out}_n := O$; $\text{in}_n := f_n(O)$ worklist := $N - N_{final}$ while worklist $\neq \emptyset$ do remove a node n from worklist $out_n := \lor \{ in_m . m in succ(n) \}$ $in_n := f_n(out_n)$ if in_n changed then worklist := worklist \cup pred(n)

Live Variables

- P = powerset of set of all variables in program (all subsets of set of variables in program)
- $\lor = \bigcup$ (order is \subseteq)
- $\perp = \emptyset$
- $\mathbf{O} = \emptyset$
- F = all functions f of the form f(x) = a ∪ (x-b)
 b is set of variables that node kills
 - a is set of variables that node reads

Meaning of Dataflow Results

- Concept of program state s for control-flow graphs
 - Program point n where execution located (n is node that will execute next)
 - Values of variables in program
- Each execution generates a trajectory of states:
 - $-s_0;s_1;\ldots;s_k$, where each $s_i \in ST$
 - $-s_{i+1}$ generated from s_i by executing basic block to
 - Update variable values
 - Obtain new program point n

Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function AF:ST→P
- Correctness condition: require that for all states s $AF(s) \le in_n$

where n is the next statement to execute in state s

Sign Analysis Example

- Sign analysis compute sign of each variable v
- Base Lattice: P = flat lattice on {-,0,+}

• Actual lattice records a value for each variable

- Example element: $[a \rightarrow +, b \rightarrow 0, c \rightarrow -]$

Interpretation of Lattice Values

- If value of v in lattice is:
 - BOT: no information about sign of v
 - -: variable v is negative
 - -0: variable v is 0
 - -+: variable v is positive
 - TOP: v may be positive or negative
- What is abstraction function AF?
 - $-AF([x_1,...,x_n]) = [sign(x_1), ..., sign(x_n)]$
 - Where sign(x) = 0 if x = 0, + if x > 0, if x < 0

Operation \otimes on Lattice

\otimes	BOT	-	0	+	TOP
BOT	BOT	-	0	+	ТОР
-	-	+	0	-	ТОР
0	0	0	0	0	0
+	+	-	0	+	ТОР
ТОР	ТОР	ТОР	0	ТОР	ТОР

Transfer Functions

- If n of the form v = c
 - $-f_n(x) = x[v \rightarrow +]$ if c is positive
 - $-f_n(x) = x[v \rightarrow 0]$ if c is 0
 - $-f_n(x) = x[v \rightarrow -]$ if c is negative
- If n of the form $v_1 = v_2 * v_3$
 - $f_n(x) = x[v_1 \rightarrow x[v_2] \otimes x[v_3]]$

• I = TOP

(uninitialized variables may have any sign)

Imprecision In Example

General Sources of Imprecision

- Abstraction Imprecision
 - Concrete values (integers) abstracted as lattice values (-,0, and +)
 - Lattice values less precise than execution values
 - Abstraction function throws away information
- Control Flow Imprecision
 - One lattice value for all possible control flow paths
 - Analysis result has a single lattice value to summarize results of multiple concrete executions
 - Join operation v moves up in lattice to combine values from different execution paths
 - Typically if $x \le y$, then x is more precise than y

Why Have Imprecision

- Make analysis tractable
- Unbounded sets of values in execution
 - Typically abstracted by finite set of lattice values
- Execution may visit unbounded set of states
 - Abstracted by computing joins of different paths

Abstraction Function

- AF(s)[v] = sign of v- $AF(n,[a \rightarrow 5, b \rightarrow 0, c \rightarrow -2]) = [a \rightarrow +, b \rightarrow 0, c \rightarrow -]$
- Establishes meaning of the analysis results

 If analysis says variable has a given sign
 Always has that sign in actual execution
- Correctness condition:
 - $\forall v. AF(s)[v] \le in_n[v] (n is node for s)$
 - -Reflects possibility of imprecision

Abstraction Function Soundness

• Will show

 $\forall v. AF(s)[v] \leq in_n[v]$ (n is node for s) by induction on length of computation that produced s

• Base case:

 $- \forall v. in_{n0}[v] = TOP, which implies that$ - ∀ v. AF(s)[v] ≤ TOP

Induction Step

- Assume $\forall v. AF(s)[v] \le in_n[v]$ for computations of length k
- Prove for computations of length k+1
- Proof:
 - Given s (state), n (node to execute next), and in_n
 - Find p (the node that just executed), s_p (the previous state), and in_p
 - By induction hypothesis $\forall v. AF(s_p)[v] \le in_p[v]$
 - Case analysis on form of n
 - If n of the form v = c, then

$$\begin{split} -s[v] &= c \text{ and } out_p[v] = sign(c), \text{ so} \\ AF(s)[v] &= sign(c) = out_p[v] \leq in_n[v] \\ -If x \neq v, s[x] = s_p[x] \text{ and } out_p[x] = in_p[x], \text{ so} \\ AF(s)[x] &= AF(s_p)[x] \leq in_p[x] = out_p[x] \leq in_n[x] \end{split}$$

• Similar reasoning if n of the form $v_1 = v_2 * v_3$

Augmented Execution States

- Abstraction functions for some analyses require augmented execution states
 - Reaching definitions: states are augmented with definition that created each value
 - Available expressions: states are augmented with expression for each value

Meet Over Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
- Consider a path p = n₀, n₁, ..., n_k, n to a node n (note that for all i n_i ∈ pred(n_{i+1}))
- The solution must take this path into account: $f_p(\perp) = (f_{nk}(f_{nk-1}(\dots f_{n1}(f_{n0}(\perp)) \dots)) \le in_n$
- So the solution must have the property that $\lor \{f_p(\bot) : p \text{ is } a \text{ path to } n\} \leq in_n$ and ideally

 \vee {f_p(\perp). p is a path to n} = in_n

Soundness Proof of Analysis Algorithm

- Property to prove:
 - For all paths p to n, $f_p(\bot) \le in_n$
- Proof is by induction on length of p
 - Uses monotonicity of transfer functions
 - Uses following lemma
- Lemma:
 - Worklist algorithm produces a solution such that
 - $f_n(in_n) = out_n$
 - if $n \in pred(m)$ then $out_n \le in_m$

Proof

- Base case: p is of length 1
 - Then $p = n_0$ and $f_p(\perp) = \perp = in_{n_0}$
- Induction step:
 - Assume theorem for all paths of length k
 - Show for an arbitrary path p of length k+1

Induction Step Proof

- $p = n_0, ..., n_k, n$
- Must show $f_k(f_{k-1}(\ldots f_{n1}(f_{n0}(\bot))\ldots)) \le in_n$
 - By induction $(f_{k-1}(\ldots f_{n1}(f_{n0}(\perp)) \ldots)) \le in_{nk}$
 - $\begin{array}{l} \text{ Apply } f_k \text{ to both sides, by monotonicity we get} \\ f_k(f_{k-1}(\ldots f_{n1}(f_{n0}(\bot)) \ldots)) \leq f_k(\text{in}_{nk}) \end{array}$
 - By lemma, $f_k(in_{nk}) = out_{nk}$
 - By lemma, out_{nk} \leq in_n
 - By transitivity, $f_k(f_{k-1}(\ldots f_{n1}(f_{n0}(\bot))\ldots)) \le in_n$

Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
 - For all n:

 \vee {f_p(\perp). p is a path to n} = in_n

Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

Actual lattice records a value for each variable
 – Example element: [a→3, b→2, c→5]

Transfer Functions

- If n of the form v = c
 - $-f_n(x) = x[v \rightarrow c]$
- If n of the form $v_1 = v_2 + v_3$ - $f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]]$
- Lack of distributivity
 - Consider transfer function f for c = a + b
 - $f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow TOP, b \rightarrow TOP, c \rightarrow 5]$
 - $f([a \rightarrow 3, b \rightarrow 2] \lor [a \rightarrow 2, b \rightarrow 3]) = f([a \rightarrow TOP, b \rightarrow TOP]) = [a \rightarrow TOP, b \rightarrow TOP, c \rightarrow TOP]$

Lack of Distributivity Anomaly a = 2a = 3b = 3b = 2 $[a \rightarrow 3, b \rightarrow 2]$ $[a \rightarrow 2, b \rightarrow 3]$ $[a \rightarrow TOP, b \rightarrow TOP]$ c = a+b Lack of Distributivity Imprecision: [$a \rightarrow TOP$, $b \rightarrow TOP$, $c \rightarrow 5$] more precise $[a \rightarrow TOP, b \rightarrow TOP, c \rightarrow TOP]$

What is the meet over all paths solution?

How to Make Analysis Distributive

• Keep combinations of values on different paths

Issues

- Basically simulating all combinations of values in all executions
 - Exponential blowup
 - Nontermination because of infinite ascending chains
- Nontermination solution
 - Use widening operator to eliminate blowup (can make it work at granularity of variables)
 - Loses precision in many cases

Multiple Fixed Points

- Dataflow analysis generates least fixed point
- May be multiple fixed points
- Available expressions example

Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic (for common sub-expression elimination)
 - Assumes expressions are available at start of analysis
 - Analysis eliminates all that are not available
 - If analysis result $in_n \le e$, can use e for CSE
 - Cannot stop analysis early and use current result
- Live variables is pessimistic (for dead code elimination)
 - Assumes all variables are live at start of analysis
 - Analysis finds variables that are dead
 - If $e \leq analysis$ result in_n, can use e for dead code elimination
 - Can stop analysis early and use current result
- Formal dataflow setup same for both analyses
- Optimism/pessimism depends on intended use

Summary

- Formal dataflow analysis framework
 - Lattices, partial orders
 - Transfer functions, joins and splits
 - Dataflow equations and fixed point solutions
- Connection with program
 - Abstraction function AF: $S \rightarrow P$
 - For any state s and program point n, $AF(s) \le in_n$
 - Meet over all paths solutions, distributivity