
MIT 6.035
Introduction to Dataflow Analysis

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology

Dataflow Analysis

• Used to determine properties of program that
involve multiple basic blocks

• Typically used to enable transformations
– common sub-expression elimination
– constant and copy propagation
– dead code elimination

• Analysis and transformation often come in pairs

Reaching Definitions

• Concept of definition and use
– a = x+y
– is a definition of a
– is a use of x and y

• A definition reaches a use if
– value written by definition
– may be read by use

Reaching Definitions
s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

Reaching Definitions and Constant
Propagation

• Is a use of a variable a constant?
– Check all reaching definitions
– If all assign variable to same constant
– Then use is in fact a constant

• Can replace variable with constant

Is a Constant in s = s+a*b?

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

Yes!
On all reaching

definitions
a = 4

Constant Propagation Transform

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + 4*b;
i = i + 1; return s

Yes!
On all reaching

definitions
a = 4

Is b Constant in s = s+a*b?

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

No!
One reaching
definition with

b = 1
One reaching
definition with

b = 2

Splitting
Preserves Information Lost At Merges

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

i < n

s = s + a*b;
i = i + 1; return s

Splitting
Preserves Information Lost At Merges

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*1;
i = i + 1;

return s

i < n

s = s + a*2;
i = i + 1;

return s

Computing Reaching Definitions

• Compute with sets of definitions
– represent sets using bit vectors
– each definition has a position in bit vector

• At each basic block, compute
– definitions that reach start of block
– definitions that reach end of block

• Do computation by simulating execution of
program until reach fixed point

0000000

1: s = 0;
2: a = 4;
3: i = 0;
k == 0

4: b = 1; 5: b = 2;

i < n

6: s = s + a*b;
7: i = i + 1; return s

1110000 1110000

1111100
1111100

1111100

1111111
1111111

1111111

Formalizing Analysis

• Each basic block has
– IN - set of definitions that reach beginning of block
– OUT - set of definitions that reach end of block
– GEN - set of definitions generated in block
– KILL - set of definitions killed in block

• GEN[s = s + a*b; i = i + 1;] = 0000011
• KILL[s = s + a*b; i = i + 1;] = 1010000
• Compiler scans each basic block to derive GEN

and KILL sets

Dataflow Equations

• IN[b] = OUT[b1] U ... U OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]
• IN[entry] = 0000000
• Result: system of equations

Solving Equations
• Use fixed point algorithm
• Initialize with solution of OUT[b] = 0000000
• Repeatedly apply equations

– IN[b] = OUT[b1] U ... U OUT[bn]
– OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Until reach fixed point
• Until equation application has no further effect
• Use a worklist to track which equation

applications may have a further effect

Reaching Definitions Algorithm
for all nodes n in N OUT[n] = emptyset; // OUT[n] = GEN[n];
Changed = N; // N = all nodes in graph
while (Changed != emptyset)

choose a node n in Changed;
Changed = Changed - { n };
IN[n] = emptyset;
for all nodes p in predecessors(n) IN[n] = IN[n] U OUT[p];
OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n) Changed = Changed U { s };

Questions

• Does the algorithm halt?
– yes, because transfer function is monotonic
– if increase IN, increase OUT
– in limit, all bits are 1

• If bit is 1, is there always an execution in which
corresponding definition reaches basic block?

• If bit is 0, does the corresponding definition
ever reach basic block?

• Concept of conservative analysis

Available Expressions

• An expression x+y is available at a point p if
– every path from the initial node to p evaluates x+y

before reaching p,
– and there are no assignments to x or y after the

evaluation but before p.
• Available Expression information can be used

to do global (across basic blocks) CSE
• If expression is available at use, no need to

reevaluate it

Computing Available Expressions

• Represent sets of expressions using bit vectors
• Each expression corresponds to a bit
• Run dataflow algorithm similar to reaching

definitions
• Big difference

– definition reaches a basic block if it comes from
ANY predecessor in CFG

– expression is available at a basic block only if it is
available from ALL predecessors in CFG

0000

a = x+y;
x == 0

x = z;
b = x+y;

i < n

c = x+y;
i = i+c;

d = x+y

i = x+y;

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

1001

1000

1000

1100 1100

a = x+y;
t = a;

x == 0

x = z;
b = x+y;

t = b;

i < n

c = t;
i = i+c;

d = t;

i = t;

Global CSE Transform
0000

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

1001

1000

1100

must use same temp
for CSE in all blocks 1000

1100

Formalizing Analysis
• Each basic block has

– IN - set of expressions available at start of block
– OUT - set of expressions available at end of block
– GEN - set of expressions computed in block
– KILL - set of expressions killed in in block

• GEN[x = z; b = x+y] = 1000
• KILL[x = z; b = x+y] = 1001
• Compiler scans each basic block to derive GEN

and KILL sets

Dataflow Equations

• IN[b] = OUT[b1] intersect ... intersect OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]
• IN[entry] = 0000
• Result: system of equations

Solving Equations
• Use fixed point algorithm
• IN[entry] = 0000
• Initialize OUT[b] = 1111
• Repeatedly apply equations

– IN[b] = OUT[b1] intersect ... intersect OUT[bn]
– OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Use a worklist algorithm to reach fixed point

Available Expressions Algorithm
for all nodes n in N OUT[n] = E; // OUT[n] = E - KILL[n];
IN[Entry] = emptyset; OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph
while (Changed != emptyset)

choose a node n in Changed;
Changed = Changed - { n };
IN[n] = E; // E is set of all expressions
for all nodes p in predecessors(n)

IN[n] = IN[n] intersect OUT[p];
OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n) Changed = Changed U { s };

Questions

• Does algorithm always halt?
• If expression is available in some execution, is

it always marked as available in analysis?
• If expression is not available in some execution,

can it be marked as available in analysis?
• In what sense is algorithm conservative?

General Correctness
• Concept in actual program execution

– Reaching definition: definition D, execution E at program point P
– Available expression: expression X, execution E at program point P

• Analysis reasons about all possible executions
• For all executions E at program point P,

– if a definition D reaches P in E
– then D is in the set of reaching definitions at P from analysis

• Other way around
– if D is not in the set of reaching definitions at P from analysis
– then D never reaches P in any execution E

• For all executions E at program point P,
– if an expression X is in set of available expressions at P from analysis
– then X is available in E at P

• Concept of being conservative

Duality In Two Algorithms

• Reaching definitions
– Confluence operation is set union
– OUT[b] initialized to empty set

• Available expressions
– Confluence operation is set intersection
– OUT[b] initialized to set of available expressions

• General framework for dataflow algorithms.
• Build parameterized dataflow analyzer once,

use for all dataflow problems

Liveness Analysis

• A variable v is live at point p if
– v is used along some path starting at p, and
– no definition of v along the path before the use.

• When is a variable v dead at point p?
– No use of v on any path from p to exit node, or
– If all paths from p redefine v before using v.

What Use is Liveness Information?
• Register allocation.

– If a variable is dead, can reassign its register
• Dead code elimination.

– Eliminate assignments to variables not read later.
– But must not eliminate last assignment to variable

(such as instance variable) visible outside CFG.
– Can eliminate other dead assignments.
– Handle by making all externally visible variables

live on exit from CFG

Conceptual Idea of Analysis

• Simulate execution
• But start from exit and go backwards in CFG
• Compute liveness information from end to

beginning of basic blocks

Liveness Example

• Assume a,b,c visible
outside method

• So are live on exit
• Assume x,y,z,t not

visible
• Represent Liveness

Using Bit Vector
– order is abcxyzt

a = x+y;
t = a;

c = a+x;
x == 0

b = t+z;

c = y+1;

1100111

1100100

1110000

Dead Code Elimination

• Assume a,b,c visible
outside method

• So are live on exit
• Assume x,y,z,t not

visible
• Represent Liveness

Using Bit Vector
– order is abcxyzt

a = x+y;
t = a;

x == 0

b = t+z;

c = y+1;

1100111

1100100

1110000

Formalizing Analysis
• Each basic block has

– IN - set of variables live at start of block
– OUT - set of variables live at end of block
– USE - set of variables with upwards exposed uses in

block
– DEF - set of variables defined in block

• USE[x = z; x = x+1;] = { z } (x not in USE)
• DEF[x = z; x = x+1;y = 1;] = {x, y}
• Compiler scans each basic block to derive USE

and DEF sets

Algorithm
out[Exit] = emptyset; in[Exit] = use[Exit];
for all nodes n in N - { Exit } in[n] = emptyset;
Changed = N - { Exit };
while (Changed != emptyset)

choose a node n in Changed;
Changed = Changed - { n };
out[n] = emptyset;
for all nodes s in successors(n) out[n] = out[n] U in[p];
in[n] = use[n] U (out[n] - def[n]);
if (in[n] changed)
for all nodes p in predecessors(n)
Changed = Changed U { p };

Similar to Other Dataflow
Algorithms

• Backwards analysis, not forwards
• Still have transfer functions
• Still have confluence operators
• Can generalize framework to work for both

forwards and backwards analyses

Analysis Information Inside Basic
Blocks

• One detail:
– Given dataflow information at IN and OUT of node
– Also need to compute information at each statement

of basic block
– Simple propagation algorithm usually works fine
– Can be viewed as restricted case of dataflow

analysis

Pessimistic vs. Optimistic Analyses
• Available expressions is optimistic

(for common sub-expression elimination)
– Assume expressions are available at start of analysis
– Analysis eliminates all that are not available
– Cannot stop analysis early and use current result

• Live variables is pessimistic (for dead code elimination)
– Assume all variables are live at start of analysis
– Analysis finds variables that are dead
– Can stop analysis early and use current result

• Dataflow setup same for both analyses
• Optimism/pessimism depends on intended use

Summary
• Basic Blocks and Basic Block Optimizations

– Copy and constant propagation
– Common sub-expression elimination
– Dead code elimination

• Dataflow Analysis
– Control flow graph
– IN[b], OUT[b], transfer functions, join points

• Paired analyses and transformations
– Reaching definitions/constant propagation
– Available expressions/common sub-expression elimination
– Liveness analysis/Dead code elimination

• Stacked analysis and transformations work together

	Dataflow Analysis
	Reaching Definitions
	Reaching Definitions
	Reaching Definitions and Constant Propagation
	Computing Reaching Definitions
	Formalizing Analysis
	Dataflow Equations
	Solving Equations
	Reaching Definitions Algorithm
	Questions
	Available Expressions
	Computing Available Expressions
	Questions
	General Correctness
	Duality In Two Algorithms
	Liveness Analysis
	What Use is Liveness Information?
	Conceptual Idea of Analysis
	Liveness Example
	Algorithm
	Similar to Other Dataflow Algorithms
	Analysis Information Inside Basic Blocks
	Summary

