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Dataflow Analysis

• Used to determine properties of program that 
involve multiple basic blocks

• Typically used to enable transformations
– common sub-expression elimination 
– constant and copy propagation
– dead code elimination

• Analysis and transformation often come in pairs



Reaching Definitions

• Concept of definition and use
– a = x+y
– is a definition of a
– is a use of x and y

• A definition reaches a use if 
– value written by definition
– may be read by use



Reaching Definitions
s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s



Reaching Definitions and Constant 
Propagation

• Is a use of a variable a constant?
– Check all reaching definitions
– If all assign variable to same constant
– Then use is in fact a constant

• Can replace variable with constant



Is a Constant in s = s+a*b?

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

Yes!
On all reaching 

definitions
a = 4



Constant Propagation Transform

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + 4*b;
i = i + 1; return s

Yes!
On all reaching 

definitions
a = 4



Is b Constant in s = s+a*b?

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

No!
One reaching 
definition with

b = 1
One reaching 
definition with

b = 2



Splitting
Preserves Information Lost At Merges

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

i < n

s = s + a*b;
i = i + 1; return s



Splitting
Preserves Information Lost At Merges

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*1;
i = i + 1; 

return s

i < n

s = s + a*2;
i = i + 1; 

return s



Computing Reaching Definitions

• Compute with sets of definitions
– represent sets using bit vectors
– each definition has a position in bit vector

• At each basic block, compute
– definitions that reach start of block
– definitions that reach end of block

• Do computation by simulating execution of 
program until reach fixed point



0000000

1: s = 0; 
2: a = 4; 
3: i = 0;
k == 0 

4: b = 1; 5: b = 2;

i < n

6: s = s + a*b;
7: i = i + 1; return s

1110000 1110000

1111100
1111100

1111100

1111111
1111111

1111111



Formalizing Analysis

• Each basic block has
– IN - set of definitions that reach beginning of block
– OUT - set of definitions that reach end of block
– GEN - set of definitions generated in block
– KILL - set of definitions killed in block

• GEN[s = s + a*b; i = i + 1;] = 0000011
• KILL[s = s + a*b; i = i + 1;] = 1010000
• Compiler scans each basic block to derive GEN 

and KILL sets



Dataflow Equations

• IN[b] = OUT[b1] U ... U OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]
• IN[entry] = 0000000
• Result: system of equations



Solving Equations
• Use fixed point algorithm
• Initialize with solution of OUT[b] = 0000000
• Repeatedly apply equations

– IN[b] = OUT[b1] U ... U OUT[bn]
– OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Until reach fixed point 
• Until equation application has no further effect
• Use a worklist to track which equation 

applications may have a further effect



Reaching Definitions Algorithm
for all nodes n in N OUT[n] = emptyset; // OUT[n] = GEN[n];
Changed = N; // N = all nodes in graph
while (Changed != emptyset)

choose a node n in Changed;
Changed = Changed - { n };
IN[n] = emptyset;
for all nodes p in predecessors(n) IN[n] = IN[n] U OUT[p];
OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n) Changed = Changed U { s };



Questions

• Does the algorithm halt?
– yes, because transfer function is monotonic
– if increase IN, increase OUT
– in limit, all bits are 1

• If bit is 1, is there always an execution in which 
corresponding definition reaches basic block?

• If bit is 0, does the corresponding definition 
ever reach basic block?

• Concept of conservative analysis



Available Expressions

• An expression x+y is available at a point p if 
– every path from the initial node to p evaluates x+y 

before reaching p, 
– and there are no assignments to x or y after the 

evaluation but before p.
• Available Expression information can be used 

to do global (across basic blocks) CSE
• If expression is available at use, no need to 

reevaluate it



Computing Available Expressions

• Represent sets of expressions using bit vectors
• Each expression corresponds to a bit
• Run dataflow algorithm similar to reaching 

definitions
• Big difference

– definition reaches a basic block if it comes from 
ANY predecessor in CFG

– expression is available at a basic block only if it is 
available from ALL predecessors in CFG 



0000

a = x+y;
x == 0 

x = z;
b = x+y;

i < n

c = x+y;
i = i+c;

d = x+y

i = x+y; 

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

1001

1000

1000

1100 1100



a = x+y;
t = a;

x == 0 

x = z;
b = x+y;

t = b;

i < n

c = t;
i = i+c;

d = t;

i = t; 

Global CSE Transform
0000

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

1001

1000

1100

must use same temp
for CSE in all blocks 1000

1100



Formalizing Analysis
• Each basic block has

– IN - set of expressions available at start of block
– OUT - set of expressions available at end of block
– GEN - set of expressions computed in block
– KILL - set of expressions killed in in block

• GEN[x = z; b = x+y] = 1000
• KILL[x = z; b = x+y] = 1001
• Compiler scans each basic block to derive GEN 

and KILL sets



Dataflow Equations

• IN[b] = OUT[b1] intersect ... intersect OUT[bn]
– where b1, ..., bn are predecessors of b in CFG

• OUT[b] = (IN[b] - KILL[b]) U GEN[b]
• IN[entry] = 0000
• Result: system of equations



Solving Equations
• Use fixed point algorithm
• IN[entry] = 0000
• Initialize OUT[b] = 1111
• Repeatedly apply equations

– IN[b] = OUT[b1] intersect ... intersect OUT[bn]
– OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Use a worklist algorithm to reach fixed point



Available Expressions Algorithm
for all nodes n in N OUT[n] = E;  // OUT[n] = E - KILL[n];
IN[Entry] = emptyset; OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; // N = all nodes in graph
while (Changed != emptyset)

choose a node n in Changed;
Changed = Changed - { n };
IN[n] = E; // E is set of all expressions
for all nodes p in predecessors(n) 

IN[n] = IN[n] intersect OUT[p];
OUT[n] = GEN[n] U (IN[n] - KILL[n]);
if (OUT[n] changed)
for all nodes s in successors(n) Changed = Changed U { s };



Questions

• Does algorithm always halt?
• If expression is available in some execution, is 

it always marked as available in analysis?
• If expression is not available in some execution, 

can it be marked as available in analysis?
• In what sense is algorithm conservative?



General Correctness
• Concept in actual program execution

– Reaching definition: definition D, execution E at program point P
– Available expression: expression X, execution E at program point P

• Analysis reasons about all possible executions
• For all executions E at program point P, 

– if a definition D reaches P in E
– then D is in the set of reaching definitions at P from analysis

• Other way around
– if D is not in the set of reaching definitions at P from analysis
– then D never reaches P in any execution E

• For all executions E at program point P,
– if an expression X is in set of available expressions at P from analysis
– then X is available in E at P 

• Concept of being conservative



Duality In Two Algorithms

• Reaching definitions
– Confluence operation is set union
– OUT[b] initialized to empty set

• Available expressions
– Confluence operation is set intersection
– OUT[b] initialized to set of available expressions

• General framework for dataflow algorithms.
• Build parameterized dataflow analyzer once, 

use for all dataflow problems



Liveness Analysis

• A variable v is live at point p if 
– v is used along some path starting at p, and 
– no definition of v along the path before the use.

• When is a variable v dead at point p?
– No use of  v on any path from p to exit node, or
– If all paths from p redefine v before using v.



What Use is Liveness Information?
• Register allocation.

– If a variable is dead, can reassign its register
• Dead code elimination.

– Eliminate assignments to variables not read later.
– But must not eliminate last assignment to variable 

(such as instance variable) visible outside CFG.
– Can eliminate other dead assignments.
– Handle by making all externally visible variables 

live on exit from CFG



Conceptual Idea of Analysis

• Simulate execution
• But start from exit and go backwards in CFG
• Compute liveness information from end to 

beginning of basic blocks



Liveness Example

• Assume a,b,c visible 
outside method

• So are live on exit
• Assume x,y,z,t not 

visible
• Represent Liveness

Using Bit Vector
– order is abcxyzt

a = x+y;
t = a;

c = a+x;
x == 0 

b = t+z;

c = y+1; 

1100111

1100100

1110000



Dead Code Elimination

• Assume a,b,c visible 
outside method

• So are live on exit
• Assume x,y,z,t not 

visible
• Represent Liveness

Using Bit Vector
– order is abcxyzt

a = x+y;
t = a;

x == 0 

b = t+z;

c = y+1; 

1100111

1100100

1110000



Formalizing Analysis
• Each basic block has

– IN - set of variables live at start of block
– OUT - set of variables live at end of block
– USE - set of variables with upwards exposed uses in 

block
– DEF - set of variables defined in block

• USE[x = z; x = x+1;] = { z } (x not in USE)
• DEF[x = z; x = x+1;y = 1;] = {x, y}
• Compiler scans each basic block to derive USE 

and DEF sets



Algorithm
out[Exit] = emptyset; in[Exit] = use[Exit];
for all nodes n in N - { Exit } in[n] = emptyset;
Changed = N - { Exit };
while (Changed != emptyset)

choose a node n in Changed;
Changed = Changed - { n };
out[n] = emptyset;
for all nodes s in successors(n) out[n] = out[n] U in[p];
in[n] = use[n] U (out[n] - def[n]);
if (in[n] changed)
for all nodes p in predecessors(n)
Changed = Changed U { p };



Similar to Other Dataflow 
Algorithms

• Backwards analysis, not forwards
• Still have transfer functions
• Still have confluence operators
• Can generalize framework to work for both 

forwards and backwards analyses



Analysis Information Inside Basic 
Blocks

• One detail:
– Given dataflow information at IN and OUT of node
– Also need to compute information at each statement 

of basic block
– Simple propagation algorithm usually works fine
– Can be viewed as restricted case of dataflow 

analysis



Pessimistic vs. Optimistic Analyses
• Available expressions is optimistic                             

(for common sub-expression elimination)
– Assume expressions are available at start of analysis
– Analysis eliminates all that are not available
– Cannot stop analysis early and use current result

• Live variables is pessimistic (for dead code elimination)
– Assume all variables are live at start of analysis
– Analysis finds variables that are dead
– Can stop analysis early and use current result

• Dataflow setup same for both analyses
• Optimism/pessimism depends on intended use



Summary
• Basic Blocks and Basic Block Optimizations

– Copy and constant propagation
– Common sub-expression elimination
– Dead code elimination

• Dataflow Analysis
– Control flow graph
– IN[b], OUT[b], transfer functions, join points

• Paired analyses and transformations
– Reaching definitions/constant propagation
– Available expressions/common sub-expression elimination
– Liveness analysis/Dead code elimination

• Stacked analysis and transformations work together
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