
Fall 2005

Lecture 15: Putting it all
together

From parsing to code generation

How to make the computer understand?

•Write a program using a programming language

•	 Microprocessors talk in assembly language

Translation

written
Compiler

Assembly
Language

Program

in a
Programming

Languages

Saman Amarasinghe 2 6.035 ©MIT Fall 1998

Example (input program)

int expr(int n)
{

int d;

d = 4 * n * n * (n + 1) * (n + 1);

return d;

}

Saman Amarasinghe 3 6.035 ©MIT Fall 1998

Example (Output assembly code)
Unoptimized Code Optimized Code

expr:

.LFB2:

pushq %rbp

.LCFI0:

movq %rsp, %rbp

expr:
.LFB2:

movl %edi, %eax
imull %edi, %eax
incl %edi

.LCFI1: imull %edi, %eax
movl %edi, -4(%rbp) imull %edi, %eax

movl -4(%rbp), %eax
sall $2, %eax
ret

movl %eax, %edx

imull -4(%rbp), %edx

movl -4(%rbp), %eax

incl %eax

imull %eax, %edx

movl -4(%rbp), %eax

incl %eax

imull %edx, %eax

sall $2, %eax

movl %eax, -8(%rbp)

movl -8(%rbp), %eax

leave

ret

Saman Amarasinghe 4 6.035 ©MIT Fall 1998

5 6.035

)

Saman Amarasinghe ©MIT Fall 1998

Anatomy of a Computer

Code Optimizer

Code Generator
Optimized Intermediate Representation

Assembly code

Intermediate Representation
Semantic Analyzer

Lexical Analyzer (Scanner)

Syntax Analyzer (Parser)
Token Stream

Parse Tree

Program (character stream

Lexical Analysis

•	 Lexical analyzer create tokens out of a text
stream

•	 Tokens are defined using regular expressions

Saman Amarasinghe 6 6.035 ©MIT Fall 1998

1

Examples of Regular Expressions
Regular Expression

a
Strings matched
“a”

a · b “ab”
a | b “a” “b”
ε “”
a* “” “a” “aa” “aaa” …
(a | ε) · b “ab” “b”
num = 0|1|2|3|4|5|6|7|8|9 “0” “1” “2” “3” …
posint = num · num* “8” “6035” …
int = (ε | -) · posint “-42” “1024” …
real = int · (ε | (. · posint)) “-12.56” “12” “1.414”...

Saman Amarasinghe 7 6.035 ©MIT Fall 1998

Lexical Analysis

•	 Lexical analyzer create tokens out of a text
stream

•	 Tokens are defined using regular expressions
•	 Regular expressions can be mapped to

Nondeterministic Finite Automatons (NFA)
– by simple construction

•	 NFA is transformed to a DFA
– Transformation algorithm
– Executing a DFA is straightforward

Saman Amarasinghe 8 6.035 ©MIT Fall 1998

Syntax Analysis (parsing)

•	 Defining a language using context-free
grammars

Saman Amarasinghe 9 6.035 ©MIT Fall 1998

Example: A CFG for expressions

<expr> → <expr> <op> <expr>

<expr> → (<expr>)

<expr> → - <expr>

<expr> → num

<op> → +

<op> → *

Saman Amarasinghe 10 6.035 ©MIT Fall 1998

Parse Tree Example

num ‘*’ ‘(‘ num ‘+’ num ‘)’

<op>

<expr>

<expr>

<expr>

<expr> <expr>

num * (

<expr>

)

<op>

Syntax Analysis (parsing)

•	 Defining a language using context-free
grammars

•	 Classification of Grammars

LR(0)
SLR(1)

(1)
LR(1)
LR(k)

regular

LALR

unambiguous
Context free

num + num
Saman Amarasinghe 11 6.035 ©MIT Fall 1998 Saman Amarasinghe 12 6.035 ©MIT Fall 1998

2

13 6.035

LR(k) Parser Engine
() $ X

(2) (2) (2)
(3) (3) (3)

14 6.035

→ •
→ • Y
→ • (
→ • ()
→ •

s0

Y

→ <X> • $
s5

(
Y

s4
→ (•

)→ (•)
s3

() $ X Y
s0 shi))
s1 i (5) ()
s2 shi))
s3 i
s4))
s5
s6 (2)

→ (•
→ (•)
→ • ()
→ •

s1

(
→ (•)
→ • ()
→ •

s2(

→ •
s6

X
Y

31

Saman Amarasinghe ©MIT Fall 1998

Current Symbol

Parser A
ction Sy

m
bo

l S
ta

ck

St
at

e
St

ac
k

ACTION Goto
State
s0 shift to s2 error error goto s1
s1 error error accept
s2 shift to s2 shift to s5 error goto s3
s3 error shift to s4 error
s4 reduce reduce reduce
s5 reduce reduce reduce

Saman Amarasinghe ©MIT Fall 1998

<S> <X> $
<X>
<X>
<Y> <Y>
<Y>

<S> <Y> <Y>)

<Y> <Y>

ACTION Goto
State

ft to s1 reduce (5 reduce (5 goto s5 goto s6
sh ft to s2 reduce reduce 3 or 5 goto s3

ft to s2 reduce (5 reduce (5 goto s3
error sh ft to s4 error
error reduce (4 reduce (4
error error accept
error error reduce

<X>
<Y> <Y>
<Y> <Y>
<Y>

<Y> <Y>
<Y> <Y>
<Y>

<X> <Y>

Semantic Analysis

•	 Building a symbol table
•	 Static Checking

– Flow-of-control checks
– Uniqueness checks
– Type checking

•	 Dynamic Checking
– Array bounds check
– Null pointer dereference check

Saman Amarasinghe 15 6.035 ©MIT Fall 1998

Translation to Intermediate Format

•	 Goal: Remain Largely Machine Independent
But Move Closer to Standard Machine Model
– From high-level IR to a low-level IR

•	 Eliminate Structured Flow of Control

•	 Convert to a Flat Address Space

Saman Amarasinghe 16 6.035 ©MIT Fall 1998

Code Optimizations

•	 Generate code as good as hand-crafted by a
good assembly programmer

•	 Have stable, robust performance
•	 Abstract the architecture away from the

programmer
– Exploit architectural strengths
– Hide architectural weaknesses

Saman Amarasinghe 17 6.035 ©MIT Fall 1998

Code Optimizations

•	 Algebraic simplification
•	 Common subexpression elimination
•	 Copy propagation
•	 Constant propagation
•	 Dead-code elimination
•	 Register allocation
•	 Instruction Scheduling

Saman Amarasinghe 18 6.035 ©MIT Fall 1998

3

Figure by MIT OCW.

Compiler Project!

•	 You guys build a full-blown compiler from the
ground up!!!

•	 From decaf to working code

Saman Amarasinghe 19 6.035 ©MIT Fall 1998

How will you use 6.035 knowledge?

•	 As an informed programmer
•	 As a designer of simple languages to aid other

programming tasks
•	 As an engineer dealing with new computer

architectures
•	 As a true compiler hacker

Saman Amarasinghe 21 6.035 ©MIT Fall 1998

1. Informed Programmer

•	 What did you learned in 6.035?
– How optimizations work

or why they did not work

– How to read and understand optimized code

Saman Amarasinghe 23 6.035 ©MIT Fall 1998

Compiler Derby

•	 Who has the fastest compiler in the east???

•	 Will give you the program 12 hours in advance
– Test and make all the optimizations work
– DO NOT ADD PROGRAM SPECIFIC HACKS!

•	 Wednesday, December 14th at 11:00AM
location TBA
– refreshments provided

Saman Amarasinghe 20 6.035 ©MIT Fall 1998

1. Informed Programmer

•	 Now you know what the compiler is doing
– don’t treat it as a black box
– don’t trust it to do the right thing!

•	 Implications
– performance
– debugging
– correctness

Saman Amarasinghe 22 6.035 ©MIT Fall 1998

25

2. Language Extensions

•	 In many applications and systems, you may
need to:
– implement a simple language

• handle input
• define an interface
• command and control

– extend a language
• add new functionality
• modify semantics
• help with optimizations

Saman Amarasinghe 24 6.035 ©MIT Fall 1998

4

2. Language Extensions

•	 What you learned in 6.035
– define tokens and languages using regular

expressions and CFGs

– use tools such as jlex, lex, javacup, yacc
– build intermediate representations
– perform simple transformations on the IR

Saman Amarasinghe 25 6.035 ©MIT Fall 1998

3. Designing New Architectures

•	 Great advances in VLSI technology
– very fast and small transistors
– scaling up to billion transistors
– but, slow and limited wires and I/O

•	 A computer architecture is a combination of
hardware and compiler
– need to know what a compiler can do and what

hardware need to do
– If compiler can do it don’t waste hardware

resources.

Saman Amarasinghe 27 6.035 ©MIT Fall 1998

3. Back-end support 3. Back-end support

•
•

Every new architecture need a new back
Instruction scheduling
– Even if the ISA is the same, different resou

constrains
– How to handle new features

end

rce

• What do you learned in 6.035
– Intermediate representations
– Transforming/optimizing the IR
– Process of generating assembly from a high-level IR
– Assembly interface issues (eg: calling conventions)
– Register allocation issues
– Code scheduling issues

Saman Amarasinghe 29 6.035 ©MIT Fall 1998 Saman Amarasinghe 30 6.035 ©MIT Fall 1998

29

3. Computer Architectures

•	 Many special purpose processors
– in your cell phone, car engine, watch, etc. etc.

•	 Designing new architectures
•	 Adapting compiler back-ends for new

architectures

Saman Amarasinghe 26 6.035 ©MIT Fall 1998

3. Designing New Architectures

•	 What did you learned in 6.035
– Capabilities of a compiler: what is simple and what

is hard to do
– How to think like a compiler writer

Saman Amarasinghe 28 6.035 ©MIT Fall 1998

5

36

4. Compiler Hacking

•	 Theory

•	 Algorithms

•	 Implementation

Saman Amarasinghe 31 6.035 ©MIT Fall 1998

4. Compiler Hacking
•	 Algorithms:

– Design a solution to a given problem

(Mostly new optimizations)

– Use many techniques such as graph theory, number
theory, etc.

– May have to limit the scope and find good

heuristics

•	 Examples
– partial redundancy elimination
– register allocation by graph coloring
– using multi-granular (MMX) operations

Saman Amarasinghe 33 6.035 ©MIT Fall 1998

4. Compiler Hacking

•	 What did you learned in 6.035?

Saman Amarasinghe 35 6.035 ©MIT Fall 1998

36

4. Compiler Hacking

•	 Theory:
– Develop general, abstract concepts
– Prove correctness, optimality etc.

•	 Examples
– parse theory
– lattices and data-flow
– abstract interpretation
– The language ML

Saman Amarasinghe 32 6.035 ©MIT Fall 1998

4. Compiler Hacking
•	 Implementation:

– Develop a new compiler
– Issues of designing a very complex software
– Putting theory and algorithms into practice

•	 Examples
– A JIT for Java
– A query optimization engine for SQL
– A rasterizer for postscript

Saman Amarasinghe 34 6.035 ©MIT Fall 1998

Where to Look for Current Research?

•	 PLDI – Programming Languages Design and Implementation
Conference

•	 Code Generation / Machine specific
– Micro Conference
–	 ASPLOS – Architecture Support for Programming Languages and

Operating Systems
– CGO – Code Generation and Optimization

•	 Language Theory
– POPL – Principles of Programming Languages
–	 OOPSLA – Object Oriented Programming Systems Languages and

Applications
•	 Program Analysis

– SAS – Static Analysis Symposium
– PPoPP – Principles and Practice of Parallel Programming

Saman Amarasinghe 36 6.035 ©MIT Fall 1998

6

