
1 6.090, IAP 2005—Lecture 3

Department of Electrical Engineering and Computer Science
6.090—Building Programming Experience

IAP 2005

Lecture 3

Scheme

1.	 Special Forms

(a) begin (begn exps)
Evaluate each expression in order and return the value of the last expression.

Problems

1. Write abs, a function that returns the absolute value of its input.

(abs 5)

;Value: 5

(abs 5)

;Value: 5

(define abs

(lambda (val)

2. Write sumton which sums the numbers from 1 to n inclusive.

(define	 sumton

(lambda (n)

Alter the procedure to sum the squares of the numbers.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2 6.090, IAP 2005—Lecture 3

3. Write a procedure that computes e.

4. Write a procedure that runs forever. (Remember that Cc, Cc stops evaluation)

5. Using stringappend, write a procedure pad, which takes a string and a number, that returns
the string with that number of spaces added to the end.

(pad "yay" 0)

;Value: "yay"

(pad "yay" 1)

;Value: "yay "

(pad "yay" 3)

;Value: "yay "

(define pad

6. Write a procedure that uses Euclid’s algorithm to compute the GCD of two numbers. Euclid’s
algorithm (according to Knuth it’s the oldest known algorithm) goes as follows: if r is the
remainder of a divided by b, then the common divisors of a and b are the same as those of b
and r. Additionally, the gcd of a number and 0 is the number.

(gcd 206 40)

;Value: 2

(define gcd

(lambda (a b)

3 6.090, IAP 2005—Lecture 3

Tower of Hanoi

Scheme

1. Special Forms

(a) define (sugared form) (define (name parameters) expressions)
This form is equivalent to (define name (lambda (parameters) expressions)).

(b) let (let bindings body)
Binds the given bindings for the duration of the body. The bindings is a list of (name
value) pairs. The body consists of one or more expressions which are evaluated in order
and the value of last is returned.

Problems

7. Guess the value, then evaluate the expression in scheme. If your guess differs from the actual
output, try desugaring any relevant expressions.

(define (foo x)

(+ x 3))

foo

(foo 5)

(define bar 5)

4 6.090, IAP 2005—Lecture 3

(define (baz) 5)

bar

baz

(bar)

(baz)

(let ((a 3)

(b 5))

(+ a b))

(let ((+ *)

(* +))

(+ 3 (* 4 5)))

(define m 3)

(let ((m (+ m 1)))

(+ m 1))

(define n 4)

(let ((n 12)

(o (+ n 2)))

(* n o))

Guessing Game

