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OUR MOTIVATION FROM LAST 
LECTURE

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)
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INTEGERS

 Integers have straightforward representations in binary
 The code was simple (and can add a piece to deal with negative

numbers)
if num < 0:

is_neg = True

num = abs(num)

else:

is_neg = False

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

if is_neg:

result = '-' + result
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FRACTIONS
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FRACTIONS

 What does the decimal fraction 0.abc mean?
 a*10-1 + b*10-2 + c*10-3

 For binary representation, we use the same idea
 a*2-1 + b*2-2 + c*2-3

 Or to put this in simpler terms, the binary representation of a
decimal fraction f would require finding the values of a, b, c,
etc. such that
 f = 0.5a + 0.25b + 0.125c + 0.0625d + 0.03125e + …

6.100L Lecture 5
5



WHAT ABOUT FRACTIONS?

 How might we find that representation?
 In decimal form: 3/8 = 0.375 = 3*10-1 + 7*10-2 + 5*10-3

 Recipe idea: if we can multiply by a power of 2 big enough to
turn into a whole number, can convert to binary, and then
divide by the same power of 2 to restore
 0.375 * (2**3) = 310

 Convert 3 to binary (now 112)
 Divide by 2**3 (shift right three spots) to get 0.0112
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BUT…

 If there is no integer p such that x*(2p) is a whole number,
then internal representation is always an approximation
 And I am assuming that the representation for the decimal

fraction I provided as input is completely accurate and not
already an approximation as a result of number being read into
Python
 Floating point conversion works:

 Precisely for numbers like 3/8
 But not for 1/10
 One has a power of 2 that converts to whole number, the other

doesn’t
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TRACE THROUGH THIS ON YOUR OWN
Python Tutor LINK

x =0.625

p = 0
while ((2**p)*x)%1 != 0:

print('Remainder = ' + str((2**p)*x - int((2**p)*x)))
p += 1

num = int(x*(2**p))

result = ''
if num == 0:

result = '0'
while num > 0:

result = str(num%2) + result
num = num//2

for i in range(p - len(result)):
result = '0' + result

result = result[0:-p] + '.' + result[-p:]

print('The binary representation of the decimal ' + str(x) + ' is ' + str(result))
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WHY is this a PROBLEM?

 What does the decimal representation 0.125 mean
 1*10-1 + 2*10-2 + 5*10-3

 Suppose we want to represent it in binary?
 1*2-3

 How how about the decimal representation 0.1
 In base 10: 1 * 10-1

 In base 2: ?
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THE POINT?

 If everything ultimately is represented in terms of bits,
we need to think about how to use binary representation
to capture numbers
 Integers are straightforward
 But real numbers (things with digits after the decimal

point) are a problem
 The idea was to try and convert a real number to an int by

multiplying the real with some multiple of 2 to get an int
 Sometimes there is no such power of 2!
 Have to somehow approximate the potentially infinite binary

sequence of bits needed to represent them
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FLOATS
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STORING FLOATING POINT NUMBERS
#.#

 Floating point is a pair of integers
 Significant digits and base 2 exponent
 (1, 1)  1*21 102 2.0
 (1, -1)  1*2-1 0.12 0.5
 (125, -2)  125*2-2 11111.012 31.25
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USE A FINITE SET OF BITS TO REPRESENT A 
POTENTIALLY INFINITE SET OF BITS

 The maximum number of significant digits governs the
precision with which numbers can be represented
 Most modern computers use 32 bits to represent significant

digits
 If a number is represented with more than 32 bits in binary, the

number will be rounded
 Error will be at the 32nd bit
 Error will only be on order of 2*10-10
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SURPRISING RESULTS!
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x = 0
for i in range(10):

x += 0.125
print(x == 1.25)

x = 0
for i in range(10):

x += 0.1
print(x == 1)

print(x, '==', 10*0.1)
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MORAL of the STORY

 Never use == to test floats
 Instead test whether they are within small amount of each other

 What gets printed isn’t always what is in memory
 Need to be careful in designing algorithms that use floats
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APPROXIMATION 
METHODS
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LAST LECTURE

 Guess-and-check provides a simple algorithm for solving
problems
 When set of potential solutions is enumerable, exhaustive

enumeration guaranteed to work (eventually)
 It’s a limiting way to solve problems

 Increment is usually an integer but not always. i.e. we just need some
pattern to give us a finite set of enumerable values

 Can’t give us an approximate solution to varying degrees
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BETTER than GUESS-and-CHECK

 Want to find an approximation to an answer
 Not just the correct answer, like guess-and-check
 And not just that we did not find the answer, like guess-and-check
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EFFECT of APPROXIMATION on 
our ALGORITHMS?

 Exact answer may not be accessible
 Need to find ways to get “good enough” answer

 Our answer is “close enough” to ideal answer

 Need ways to deal with fact that exhaustive enumeration can’t
test every possible value, since set of possible answers is in
principle infinite
 Floating point approximation errors are important to this

method
 Can’t rely on equality!
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APPROXIMATE sqrt(x)
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FINDING ROOTS

 Last lecture we looked at using exhaustive enumeration/guess
and check methods to find the roots of perfect squares
 Suppose we want to find the square root of any positive

integer, or any positive number
 Question: What does it mean to find the square root of x?

 Find an r such that r*r = x ?
 If x is not a perfect square, then not possible in general to find an exact

r that satisfies this relationship; and exhaustive search is infinite
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APPROXIMATION

 Find an answer that is “good enough”
 E.g., find a r such that r*r is within a given (small) distance of x
 Use epsilon: given x we want to find r such that |𝑟𝑟2-x|<𝜀𝜀

 Algorithm
 Start with guess known to be too small – call it g
 Increment by a small value – call it a – to give a new guess g
 Check if g**2 is close enough to x (within 𝜀𝜀)
 Continue until get answer close enough to actual answer

 Looking at all possible values g + k*a for integer values of k
– so similar to exhaustive enumeration
 But cannot test all possibilities as infinite
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APPROXIMATION ALGORITHM

 In this case, we have two parameters to set
 epsilon (how close are we to answer?)
 increment (how much to increase our guess?)

 Performance will vary based on these values
 In speed
 In accuracy

 Decreasing increment size  slower program, but more likely
to get good answer (and vice versa)
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APPROXIMATION ALGORITHM

 In this case, we have two parameters to set
 epsilon (how close are we to answer?)
 increment (how much to increase our guess?)

 Performance will vary based on these values
 In speed
 In accuracy

 Increasing epsilon  less accurate answer, but faster program
(and vice versa)
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BIG  IDEA
Approximation is like 
guess-and-check 
except… 
1) We increment by some small amount
2) We stop when close enough (exact is not possible)
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IMPLEMENTATION

x = 36

epsilon = 0.01

num_guesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

print(guess, 'is close to square root of', x)
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OBSERVATIONS with DIFFERENT 
VALUES for x

 For x = 36
 Didn’t find 6
 Took about 60,000 guesses

 Let’s try:
 24
 2
 12345
 54321
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x = 54321

epsilon = 0.01

numGuesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon:

guess += increment

numGuesses += 1

if numGuesses%100000 == 0:

print('Current guess =', guess)

print('Current guess**2 - x =', abs(guess*guess - x))

print('numGuesses =', numGuesses)

print(guess, 'is close to square root of', x)
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WE OVERSHOT the EPSILON!

 Blue arrow is the guess
 Green arrow is guess**2

6.100L Lecture 5

x = 54321

epsilon epsilon
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SOME OBSERVATIONS

 Decrementing function eventually starts incrementing
 So didn’t exit loop as expected

 We have over-shot the mark
 I.e., we jumped from a value too far away but too small to one too far

away but too large

 We didn’t account for this possibility when writing the loop
 Let’s fix that
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LET’S FIX IT

x = 54321

epsilon = 0.01

numGuesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon and guess**2 <= x:

guess += increment

numGuesses += 1

print('numGuesses =', numGuesses)

if abs(guess**2 - x) >= epsilon:

print('Failed on square root of', x)

else:

print(guess, 'is close to square root of', x)
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BIG  IDEA
It’s possible to overshoot 
the epsilon, so you need 
another end condition
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SOME OBSERVATIONS

 Now it stops, but reports failure, because it has over-shot the
answer
 Let’s try resetting increment to 0.00001

 Smaller increment means more values will be checked
 Program will be slower
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BIG  IDEA

Be careful when 
comparing floats.
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LESSONS LEARNED in 
APPROXIMATION

 Can’t use == to check an exit condition
 Need to be careful that looping mechanism doesn’t jump over

exit test and loop forever
 Tradeoff exists between efficiency of algorithm and accuracy of

result
 Need to think about how close an answer we want when

setting parameters of algorithm
 To get a good answer, this method can be painfully slow.

 Is there a faster way that still gets good answers?
 YES! We will see it next lecture….
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SUMMARY

 Floating point numbers introduce challenges!
 They can’t be represented in memory exactly

 Operations on floats introduce tiny errors
 Multiple operations on floats magnify errors :(

 Approximation methods use floats
 Like guess-and-check except that

(1) We use a float as an increment
(2) We stop when we are close enough

 Never use == to compare floats in the stopping condition
 Be careful about overshooting the close-enough stopping condition
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