
FLOATS and
APPROXIMATION

METHODS
(download slides and .py files to follow along)

6.100L Lecture 5
Ana Bell

1

OUR MOTIVATION FROM LAST
LECTURE

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)

6.100L Lecture 5
2

INTEGERS

 Integers have straightforward representations in binary
 The code was simple (and can add a piece to deal with negative

numbers)
if num < 0:

is_neg = True

num = abs(num)

else:

is_neg = False

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

if is_neg:

result = '-' + result

6.100L Lecture 4
3

FRACTIONS

6.100L Lecture 5
4

FRACTIONS

 What does the decimal fraction 0.abc mean?
 a*10-1 + b*10-2 + c*10-3

 For binary representation, we use the same idea
 a*2-1 + b*2-2 + c*2-3

 Or to put this in simpler terms, the binary representation of a
decimal fraction f would require finding the values of a, b, c,
etc. such that
 f = 0.5a + 0.25b + 0.125c + 0.0625d + 0.03125e + …

6.100L Lecture 5
5

WHAT ABOUT FRACTIONS?

 How might we find that representation?
 In decimal form: 3/8 = 0.375 = 3*10-1 + 7*10-2 + 5*10-3

 Recipe idea: if we can multiply by a power of 2 big enough to
turn into a whole number, can convert to binary, and then
divide by the same power of 2 to restore
 0.375 * (2**3) = 310

 Convert 3 to binary (now 112)
 Divide by 2**3 (shift right three spots) to get 0.0112

6.100L Lecture 5
6

BUT…

 If there is no integer p such that x*(2p) is a whole number,
then internal representation is always an approximation
 And I am assuming that the representation for the decimal

fraction I provided as input is completely accurate and not
already an approximation as a result of number being read into
Python
 Floating point conversion works:

 Precisely for numbers like 3/8
 But not for 1/10
 One has a power of 2 that converts to whole number, the other

doesn’t

6.100L Lecture 5
7

TRACE THROUGH THIS ON YOUR OWN
Python Tutor LINK

x =0.625

p = 0
while ((2**p)*x)%1 != 0:

print('Remainder = ' + str((2**p)*x - int((2**p)*x)))
p += 1

num = int(x*(2**p))

result = ''
if num == 0:

result = '0'
while num > 0:

result = str(num%2) + result
num = num//2

for i in range(p - len(result)):
result = '0' + result

result = result[0:-p] + '.' + result[-p:]

print('The binary representation of the decimal ' + str(x) + ' is ' + str(result))

6.100L Lecture 4
8

https://pythontutor.com/render.html#code=x%20%3D%200.625%0A%0Ap%20%3D%200%0Awhile%20%28%282**p%29*x%29%251%20!%3D%200%3A%0A%20%20%20%20print%28'Remainder%20%3D%20'%20%2B%20str%28%282**p%29*x%20-%20int%28%282**p%29*x%29%29%29%0A%20%20%20%20p%20%2B%3D%201%0A%0Anum%20%3D%20int%28x*%282**p%29%29%0A%0Aresult%20%3D%20''%0Aif%20num%20%3D%3D%200%3A%0A%20%20%20%20result%20%3D%20'0'%0Awhile%20num%20%3E%200%3A%0A%20%20%20%20result%20%3D%20str%28num%252%29%20%2B%20result%0A%20%20%20%20num%20%3D%20num//2%0A%0Afor%20i%20in%20range%28p%20-%20len%28result%29%29%3A%0A%20%20%20%20result%20%3D%20'0'%20%2B%20result%0A%0Aresult%20%3D%20result%5B0%3A-p%5D%20%2B%20'.'%20%2B%20result%5B-p%3A%5D%0Aprint%28'The%20binary%20representation%20of%20the%20decimal%20'%20%2B%20str%28x%29%20%2B%20'%20is%20'%20%2B%20str%28result%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

WHY is this a PROBLEM?

 What does the decimal representation 0.125 mean
 1*10-1 + 2*10-2 + 5*10-3

 Suppose we want to represent it in binary?
 1*2-3

 How how about the decimal representation 0.1
 In base 10: 1 * 10-1

 In base 2: ?

6.100L Lecture 5
9

THE POINT?

 If everything ultimately is represented in terms of bits,
we need to think about how to use binary representation
to capture numbers
 Integers are straightforward
 But real numbers (things with digits after the decimal

point) are a problem
 The idea was to try and convert a real number to an int by

multiplying the real with some multiple of 2 to get an int
 Sometimes there is no such power of 2!
 Have to somehow approximate the potentially infinite binary

sequence of bits needed to represent them

6.100L Lecture 5
10

FLOATS

6.100L Lecture 5
11

STORING FLOATING POINT NUMBERS
#.#

 Floating point is a pair of integers
 Significant digits and base 2 exponent
 (1, 1)  1*21 102 2.0
 (1, -1)  1*2-1 0.12 0.5
 (125, -2)  125*2-2 11111.012 31.25

6.100L Lecture 5

125 is 1111101 then move the decimal point over 2

12

USE A FINITE SET OF BITS TO REPRESENT A
POTENTIALLY INFINITE SET OF BITS

 The maximum number of significant digits governs the
precision with which numbers can be represented
 Most modern computers use 32 bits to represent significant

digits
 If a number is represented with more than 32 bits in binary, the

number will be rounded
 Error will be at the 32nd bit
 Error will only be on order of 2*10-10

6.100L Lecture 5
13

SURPRISING RESULTS!

6.100L Lecture 5

x = 0
for i in range(10):

x += 0.125
print(x == 1.25)

x = 0
for i in range(10):

x += 0.1
print(x == 1)

print(x, '==', 10*0.1)

14

MORAL of the STORY

 Never use == to test floats
 Instead test whether they are within small amount of each other

 What gets printed isn’t always what is in memory
 Need to be careful in designing algorithms that use floats

6.100L Lecture 5
15

APPROXIMATION
METHODS

6.100L Lecture 5
16

LAST LECTURE

 Guess-and-check provides a simple algorithm for solving
problems
 When set of potential solutions is enumerable, exhaustive

enumeration guaranteed to work (eventually)
 It’s a limiting way to solve problems

 Increment is usually an integer but not always. i.e. we just need some
pattern to give us a finite set of enumerable values

 Can’t give us an approximate solution to varying degrees

6.100L Lecture 5
17

BETTER than GUESS-and-CHECK

 Want to find an approximation to an answer
 Not just the correct answer, like guess-and-check
 And not just that we did not find the answer, like guess-and-check

6.100L Lecture 5
18

EFFECT of APPROXIMATION on
our ALGORITHMS?

 Exact answer may not be accessible
 Need to find ways to get “good enough” answer

 Our answer is “close enough” to ideal answer

 Need ways to deal with fact that exhaustive enumeration can’t
test every possible value, since set of possible answers is in
principle infinite
 Floating point approximation errors are important to this

method
 Can’t rely on equality!

6.100L Lecture 5
19

APPROXIMATE sqrt(x)

6.100L Lecture 5

-2 -1 0 1 2 3 4 5 6 7 8

x
guess?

Good
enough

20

FINDING ROOTS

 Last lecture we looked at using exhaustive enumeration/guess
and check methods to find the roots of perfect squares
 Suppose we want to find the square root of any positive

integer, or any positive number
 Question: What does it mean to find the square root of x?

 Find an r such that r*r = x ?
 If x is not a perfect square, then not possible in general to find an exact

r that satisfies this relationship; and exhaustive search is infinite

6.100L Lecture 5
21

APPROXIMATION

 Find an answer that is “good enough”
 E.g., find a r such that r*r is within a given (small) distance of x
 Use epsilon: given x we want to find r such that |𝑟𝑟2-x|<𝜀𝜀

 Algorithm
 Start with guess known to be too small – call it g
 Increment by a small value – call it a – to give a new guess g
 Check if g**2 is close enough to x (within 𝜀𝜀)
 Continue until get answer close enough to actual answer

 Looking at all possible values g + k*a for integer values of k
– so similar to exhaustive enumeration
 But cannot test all possibilities as infinite

6.100L Lecture 5
22

APPROXIMATION ALGORITHM

 In this case, we have two parameters to set
 epsilon (how close are we to answer?)
 increment (how much to increase our guess?)

 Performance will vary based on these values
 In speed
 In accuracy

 Decreasing increment size  slower program, but more likely
to get good answer (and vice versa)

6.100L Lecture 5

-2 -1 0 1 2 3 4 5 6 7 8

x
guess?

Good
enough

epsilon epsilon23

APPROXIMATION ALGORITHM

 In this case, we have two parameters to set
 epsilon (how close are we to answer?)
 increment (how much to increase our guess?)

 Performance will vary based on these values
 In speed
 In accuracy

 Increasing epsilon  less accurate answer, but faster program
(and vice versa)

6.100L Lecture 5

-2 -1 0 1 2 3 4 5 6 7 8

x
guess?

Good
enough

epsilon epsilon24

BIG IDEA
Approximation is like
guess-and-check
except…
1) We increment by some small amount
2) We stop when close enough (exact is not possible)

6.100L Lecture 5
25

IMPLEMENTATION

x = 36

epsilon = 0.01

num_guesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

print(guess, 'is close to square root of', x)

6.100L Lecture 5
26

OBSERVATIONS with DIFFERENT
VALUES for x

 For x = 36
 Didn’t find 6
 Took about 60,000 guesses

 Let’s try:
 24
 2
 12345
 54321

6.100L Lecture 5
27

x = 54321

epsilon = 0.01

numGuesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon:

guess += increment

numGuesses += 1

if numGuesses%100000 == 0:

print('Current guess =', guess)

print('Current guess**2 - x =', abs(guess*guess - x))

print('numGuesses =', numGuesses)

print(guess, 'is close to square root of', x)

6.100L Lecture 5
28

WE OVERSHOT the EPSILON!

 Blue arrow is the guess
 Green arrow is guess**2

6.100L Lecture 5

x = 54321

epsilon epsilon

29

SOME OBSERVATIONS

 Decrementing function eventually starts incrementing
 So didn’t exit loop as expected

 We have over-shot the mark
 I.e., we jumped from a value too far away but too small to one too far

away but too large

 We didn’t account for this possibility when writing the loop
 Let’s fix that

6.100L Lecture 5
30

LET’S FIX IT

x = 54321

epsilon = 0.01

numGuesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon and guess**2 <= x:

guess += increment

numGuesses += 1

print('numGuesses =', numGuesses)

if abs(guess**2 - x) >= epsilon:

print('Failed on square root of', x)

else:

print(guess, 'is close to square root of', x)

6.100L Lecture 5
31

BIG IDEA
It’s possible to overshoot
the epsilon, so you need
another end condition

6.100L Lecture 5
32

SOME OBSERVATIONS

 Now it stops, but reports failure, because it has over-shot the
answer
 Let’s try resetting increment to 0.00001

 Smaller increment means more values will be checked
 Program will be slower

6.100L Lecture 5
33

BIG IDEA

Be careful when
comparing floats.

6.100L Lecture 5
34

LESSONS LEARNED in
APPROXIMATION

 Can’t use == to check an exit condition
 Need to be careful that looping mechanism doesn’t jump over

exit test and loop forever
 Tradeoff exists between efficiency of algorithm and accuracy of

result
 Need to think about how close an answer we want when

setting parameters of algorithm
 To get a good answer, this method can be painfully slow.

 Is there a faster way that still gets good answers?
 YES! We will see it next lecture….

6.100L Lecture 5
35

SUMMARY

 Floating point numbers introduce challenges!
 They can’t be represented in memory exactly

 Operations on floats introduce tiny errors
 Multiple operations on floats magnify errors :(

 Approximation methods use floats
 Like guess-and-check except that

(1) We use a float as an increment
(2) We stop when we are close enough

 Never use == to compare floats in the stopping condition
 Be careful about overshooting the close-enough stopping condition

6.100L Lecture 5
36

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

37

https://ocw.mit.edu
https://ocw.mit.edu/terms

	FLOATS and APPROXIMATION METHODS�(download slides and .py files to follow along)
	OUR MOTIVATION FROM LAST LECTURE
	INTEGERS
	FRACTIONS
	FRACTIONS
	WHAT ABOUT FRACTIONS?
	BUT…
	TRACE THROUGH THIS ON YOUR OWN�Python Tutor LINK
	WHY is this a PROBLEM?
	THE POINT?
	FLOATS
	STORING FLOATING POINT NUMBERS�#.#
	USE A FINITE SET OF BITS TO REPRESENT A POTENTIALLY INFINITE SET OF BITS
	SURPRISING RESULTS!
	MORAL of the STORY
	APPROXIMATION METHODS
	LAST LECTURE
	BETTER than GUESS-and-CHECK
	EFFECT of APPROXIMATION on our ALGORITHMS?
	APPROXIMATE sqrt(x)
	FINDING ROOTS
	APPROXIMATION
	APPROXIMATION ALGORITHM
	APPROXIMATION ALGORITHM
	Approximation is like guess-and-check except…
	IMPLEMENTATION
	OBSERVATIONS with DIFFERENT VALUES for x
	Slide Number 30
	WE OVERSHOT the EPSILON!
	SOME OBSERVATIONS
	LET’S FIX IT
	It’s possible to overshoot the epsilon, so you need another end condition
	SOME OBSERVATIONS
	Be careful when comparing floats.
	LESSONS LEARNED in APPROXIMATION
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

