
Lecture 12 : Identity and Equality I

13.1 Quote of the Day

I like pigs. Dogs look up to us. Cats look down on us. Pigs treat us as equals.
Winston Churchill

13.2 Context

What you’ll learn: Object equality and hash codes; how to meet the object contract.

Why you should learn this: As your objects are shuffled around in your program, into and out of
collections for example, they will from time to time be tested for equality; if you haven’t thought
carefully about what this means for your classes, the result will be bugs whose effects are very
non-local and hard to trace.

What I assume you already know: Proficient in reading specifications, somewhat familiar with the
Java collection classes and the use of hash maps.

13.3 The Object Contract

In Java, every class extends Object, and therefore inherits all of its methods. Two of these are
particularly important and consequential in all programs: the method for testing equality, and the
method for generating a hash code.

public boolean equals(Object o);

public int hashCode();

Like any other methods of a superclass, these methods can be overridden. We will see in lecture
next week that a subclass should be a subtype. This means that it should behave according to the
specification of the superclass, so that an object of the subclass can be placed in a context in which
a superclass object is expected, and still behave appropriately. So a class that overrides equals
and hashCode should scrupulously obey their specification.

The specification of the Object class given in its documentation is rather abstract and may
seem abstruse. But failing to obey it has dire consequences, and tends to result in horribly obscure
bugs. Worse, if you do not understand this specification and its ramifications, you are likely to
introduce flaws in your code that have a pervasive effect and are hard to eliminate without major
reworking.

The specification of the Object class is so important that it is often referred to as ‘The Object
Contract’. The contract can be found in the method specifications for equals and hashCode in the
Java API documentation. It states that:

1

� equals must define an equivalence relation – i.e. be reflexive, symmetric, and transitive;
� equals must be consistent: repeated calls to the method must yield the same result unless the

arguments are modified in between;
� for a non-null reference x, x.equals (null) should return false; and
� hashCode must produce the same result for two objects that are deemed equal by the equals

method.

13.4 Equality and Inheritance

For the moment, let us ignore the hashCode method and look first at the properties of the equals
method. Reflexivity means that an object always equals itself; symmetry means that when a equals
b, b equals a; transitivity means that when a equals b and b equals c, a also equals c.

These may seems like obvious properties, and indeed they are. If they did not hold, it is hard
to imagine how the equals method would be used: you would have to worry about whether to write
a.equals(b) or b.equals(a), for example, if it were not symmetric.

What is much less obvious, however, is how easy it is to break these properties inadvertently.
The following example shows how symmetry and transitivity can be broken in the presence of
inheritance. Consider a simple class that stores a duration in time, with a field for the number of
days and the number of seconds:

public class Duration {

private final int day;

private final int sec;

public Duration(int day, int sec) {

this.day = day; this.sec = sec;
}

public boolean equals(Object o) {

if (!(o instanceof Duration))

return false;

Duration d = (Duration) o;

return d.day == day && d.sec == sec;

}

}

The equals method takes an Object as its argument; this is mandated by the object contract.
The method returns true if the object passed is a Duration and stores the same interval (assume
for now that the day and sec fields need to be exactly the same for two Duration objects to be
considered equal). Now suppose find that we sometimes have a need for more precision, and we
add a field for nanoseconds in a derived class:

public class NanoDuration extends Duration {

private final int nano;

public NanoDuration(int day, int sec, int nano) {

super(day,sec);

this.nano = nano;

}

}

2

What should the equals method of NanoDuration look like? We could just inherit equals from
Duration, but then two NanoDurations will be deemed equal even if they do indeed differ by
nanoseconds. We could override it like this:

public boolean equals(Object o) {

if (!(o instanceof NanoDuration))

return false;

NanoDuration nd = (NanoDuration) o;

return super.equals(nd) && nano == nd.nano;

}

This seemingly inoffensive method actually violates the requirement of symmetry. To see why,
consider a Duration and a NanoDuration:

Duration d = new Duration(1,12);

NanoDuration nd = new NanoDuration(1,12,123);

System.out.println(d.equals(nd)); // true

System.out.println(nd.equals(d)); // false! – not symmetric

Notice that d.equals(nd) returns true, but nd.equals(d) returns false! The problem is that
these two expressions use different equals methods: the first uses the method from Duration,
which ignores nanoseconds, and the second uses the method from NanoDuration.

We could try to fix this by having the equals method of NanoDuration ignore nanoseconds
when comparing against a normal Duration:

public boolean equals(Object o) {

if (!(o instanceof Duration))

return false;

// if o is a normal Duration, compare without nano field
if (!(o instanceof NanoDuration))

return super.equals(o);

NanoDuration nd = (NanoDuration) o;

return super.equals(nd) && nano == nd.nano;

}

This solves the symmetry problem, but now equality isn’t transitive! To see why, consider con
structing these points:

NanoDuration d1 = new NanoDuration(1,12,123);

Duration d2 = new Duration(1,12);

NanoDuration d3 = new NanoDuration(1,12,999);

System.out.println(d1.equals(d2)); // true

System.out.println(d2.equals(d3)); // true

System.out.println(d1.equals(d3)); // false! – not transitive

The calls p1.equals(p2) and p2.equals(p3) will both return true, but p1.equals(p3) will return
false.

3

It turns out there is no solution to this problem: it is a fundamental flaw in inheritance. You
cannot write a good equals method for NanoDuration if it inherits from Duration as written.
However, there are two workarounds. The first is to change Duration’s equals method so that it
rejects equality with any of its subclasses:

public class Duration {
//...
public boolean equals(Object o) {

if (o == null || !o.getClass().equals(getClass()))
return false;

Duration d = (Duration) o;

return d.day == day && d.sec == sec;

}
//...

}

Explicit comparison of classes is a stronger test than instanceof. A NanoDuration is an instanceof
Duration, but NanoDuration.getClass() != Duration.getClass(). The drawback of this ap
proach is that you lose the ability for harmless Duration subclasses to compare for equality to a
Duration. For example, you might write a subclass ArithmeticDuration that doesn’t add any new
attributes to Duration, but merely offers some new methods for adding and subtracting durations.
With the getClass workaround, a ArithmeticDuration can never equal a Duration, even though
it has the same (day,sec) value internally. The second workaround is to implement NanoDuration
using Duration in its representation, rather than inheriting it:

public class NanoDuration {
final Duration d;
final int nano;
//...

}

Since NanoDuration no longer extends Duration, the problem goes away. This strategy is called
composition; we will see more of it in a later lecture. Bloch’s book gives some hints on how to write
a good equals method, and he points out some common pitfalls. For example, what happens if
you write something like this:

public boolean equals(Duration d)

where you’ve substituted another type for Object in the declaration of equals?
The problems we’ve discussed here are based on two Java classes, Date and Timestamp. Timestamp

extends Date by adding a nanosecond field to it, just like our example. This causes so many prob
lems when objects of the two classes are compared that more recent versions of the specification
for Timestamp are full of caveats and complexities:

Note: This type is a composite of a java.util.Date and a separate nanoseconds value.
Only integral seconds are stored in the java.util.Date component. The fractional seconds
- the nanos - are separate. The Timestamp.equals(Object) method never returns true

4

when passed a value of type java.util.Date because the nanos component of a date is
unknown. As a result, the Timestamp.equals(Object) method is not symmetric with
respect to the java.util.Date.equals(Object) method. Also, the hashcode method uses
the underlying java.util.Data implementation and therefore does not include nanos in
its computation.

Due to the differences between the Timestamp class and the java.util.Date class men
tioned above, it is recommended that code not view Timestamp values generically as
an instance of java.util.Date. The inheritance relationship between Timestamp and
java.util.Date really denotes implementation inheritance, and not type inheritance.

In this last paragraph, the designers are basically throwing up their hands and saying that the only
way to solve this problem is to deny Timestamp’s parentage, and treat it as an entirely separate
class to Date. In retrospect, this could have been done by using Date in the implementation of
Timestamp, rather than using it in the specification. We will return to this topic in a later lecture.

13.5 Equality and Efficiency

To understand the part of the Object contract relating to the hashCode method, you’ll need to have
some idea of how hash tables work. Hash tables are a fantastic invention – one of the best ideas
of computer science. A hash table is a representation for a mapping: an abstract data type that
maps keys to values. Hash tables offer constant time lookup, so they tend to perform better than
trees or lists. Keys don’t have to be ordered, or have any particular property, except for offering
equals and hashCode.

Here’s how a hash table works. It contains an array that is initialized to a size corresponding
the number of elements that we expect to be inserted. When a key and a value are presented for
insertion, we compute the hashcode of the key, and convert it into an index in the array’s range
(e.g., by a modulo division). The value is then inserted at that index.

Hashcodes are designed so that the keys will be spread evenly over the indices. But occasionally
a conflict occurs, and two keys are placed at the same index. So rather than holding a single value
at an index, a hash table actually holds a list of key/value pairs (usually called ‘hash buckets’),
implemented in Java as objects from class with two fields. On insertion, you add a pair to the list
in the array slot determined by the hash code. For lookup, you hash the key, find the right slot,
and then examine each of the pairs until one is found whose key matches the given key.

Now it should be clear why the Object contract requires equal objects to have the same hash
key. If two equal objects had distinct hash keys, they might be placed in different slots. So if you
attempt to lookup a value using a key equal to the one with which it was inserted, the lookup may
fail.

A simple and drastic way to ensure that the contract is met is for hashCode to always return
some constant value, so every object’s hash code is the same. This satisfies the Object contract,
but it would have a disastrous performance effect, since every key will be stored in the same slot,
and every lookup will degenerate to a linear search along a long list.

The standard way to construct a more reasonable hash code that still satisfies the contract is to
compute a hash code for each component of the object that is used in the determination of equality
(usually by calling the hashCode method of each component), and then combining these, throwing
in a few arithmetic operations. Look at Joshua Bloch’s book Effective Java for details.

Most crucially, note that if you don’t override hashCode at all, you’ll get the one from Object,
which is based on the address of the object. If you have overridden equals, this will mean that
you will have almost certainly violated the contract. So as a general rule:

5

Always override hashCode when you override equals.

(This is one of Bloch’s aphorisms.)
Some years ago, so the legend goes, a 6.170 student spent hours tracking down a bug in a project

that amounted to nothing more than mispelling hashCode as hashcode. This created a method
that didn’t override the hashCode method of Object at all, and strange things happened. . .

What hash code would work for our Duration class, where a.equals(b) if they both have the
same day and sec fields? Here are some possibilities that would work, but lead to greater or lesser
efficiency in hash tables:

// always safe, but makes hash tables completely inefficient
public int hashCode() {

return 1;

}
// safe; but collisions for Durations that differ in sec only
public int hashCode() {

return day;

}
// safe; collisions possible but don’t seem likely to happen systematically
public int hashCode() {

return day+sec;

}

It is important to realize that the default hashCode implementation inherited from Object is not
appropriate. The default implementation is generally based on some part of the address of an object
in memory. This works just fine as a hash code if the only thing an object is equal to is itself. But
once we can create two objects which we wish to treat as equal (for example, two Duration objects
with the same day and sec fields), then this hash code is inappropriate, since it may give these
equal objects different hash codes.

Suppose we now changed our idea of equality for Duration to the following:

public boolean equals(Object o) {
if (!(o instanceof Duration))

return false;

Duration d = (Duration) o;

return 24*60*60*day+sec == 24*60*60*d.day+d.sec;

}

Now the day and sec fields do not have to be exactly the same for two Durations to be equal,
as long as the total number of seconds represented is the same. Hash codes of day or day+sec as
we had above now no longer work, since two equal Durations might be given different hash codes.
Here is one that works:

public int hashCode() {

return 24*60*60*day + sec;

}

So we see that whenever the behavior of the equals method changes, we must reconsider whether
the hashCode method is still safe.

6

