
1

Image removed due to copyright restrictions.

Design Project Experiences:
 Space Elevator Simulator

 Part I

6.170

Page 1

1

2

•

•

•

•

•

•

Space Elevator

Elevator 60,000 miles high to carry cargo into
space
Sci-fi solution

Capture asteroid

Place in earth orbit

Mine asteroid for its
carbon

A large cable is
extruded both upward
and downward till
complete

Page 2

2

Image removed due to copyright restrictions.

3

•

–

–
–

• (),

•

Building a Space Elevator

Arthur C. Clarke, “The Fountains of Paradise”,
1978

Invents super strong monofilament carbon fibers
and builds a cluster of cables (!)
Built a solid tower around the skeleton cables (??)
Ran the tower past geosynchronous orbit to a large
counterweight

With the invention of the carbon nanotube 1991
the concept is moving from science fiction to the
fringes of reality

Edwards and Westling, “The Space Elevator”,
2002 -- NASA-funded feasibility study.

Page 3

3

4

•

•

•

•

½

•

“Realistic” Space Elevator

Spacecraft launched into
geosynchronous (35,000km) orbit.

Spacecraft lowers thin ribbon toward
ground, and moves outward to keep it
from falling, eventually ending up at
100,000 km.

When ribbon reaches earth, it is tied to a
base station (floating platform off the
coast of Ecuador).

To strengthen and widen the initial
ribbon, climbers, powered by lasers
from earth stitch on additional ribbons
for 2 years.

Ribbon is 3 feet wide and supports 13
tons in completed elevator.

Page 4

4

 Image removed
 due to
copyright restrictions.

5

•

•

•

•

•

Why a Space Elevator?

Inexpensive delivery of satellites to
space

Large orbiting solar collectors for power
generation and transmission to earth

Manned space station at
geosynchronous orbit

Manned Mars exploration and
colonization

Future vacation facilities in space

C
h

ro
n

o
lo

g
ic

al
 o

rd
er

Page 5

5

6

•

•
–

–

–

Summer Project

Obtain first-hand experience with 6.170-like
project, a space elevator simulator

People & Schedule
Dwaine Clarke, Srini Devadas, Blaise Gassend,
Daihyun Lim
Six weeks of off-and-on work to produce
rudimentary [and buggy] implementation
Project finished up [and debugged] by Lee Lin
and Matt Notowidigdo

Page 6

6

7

•
• j

–

•

– ject

•
–

–
–

Functionality

Simulate and view space elevator dynamics
Main ob ects are Central planet, cable,
counterweight, climber

Cable modeled as masses and springs

Main forces are gravitational, centrifugal and
coriolis

Coriolis is an inertial force acting on an ob
that moves within a rotating coordinate system.

Different views:
Text file
Swing
Java 3D

Because of Coriolis force, the object does not actually deviate from its
path, but it appears to do so because of the motion of the coordinate
system.

Page 7

7

8

Our First MDD

GUI

World

SimStruct TimeSim

SimOut

Creates SimOut
objects

Displays
SimOut

Invokes TimeSim
methods

Displays World

Dynamically
updates
and reads
SimStruct

Creates static
parts of SimStruct

The World consists of all of the elements in the Space Elevator and
space. This includes the Central Planet (earth), the cable, the climber
and the counterweight, at the minimum.

You can add other planets and also describe the cable as a collection
of cables.

Simstruct is the basic simulation structure that is created by World and
TimeSim. World objects turn into SimStruct objects. For example, a
cable may be turned into a collection of masses and springs.

TimeSim incorporates methods to simulate World elements and
includes the equations that model the physical forces. TimSim
continually updates SimStruct during simulation. The output of
TimeSim, that is, the statistics of the simulation is SimOut. Note that
the positions and velocities of World elements are part of SimStruct.
SimOut corresponds to statistics gathered during simulation, for
example, the maximum force, minimum force, etc.

Page 8

8

9

…

’
“ ”

“ ” ?

A Little More Detail

Draw

World

SimStruct TimeSim

Invokes TimeSim
methods

Displays World

World
Editor

SimEditor

Adds World
components

Draw calls methods to access World s data and draws the
World

What if we want to extend the World

Displays
SimOut

The problem is that it is not very extensible if we want to add different
components to World, say the Moon, in addition to Central Planet,
cable, etc.

Page 9

9

10

Our Second MDD

Main

World

SimStruct
TimeSim

SimOut

Creation,
mutation

Displays
SimOut

Startup,
refresh

Startup,
refresh

SimOut
Viewer

Draw
(Swing)

Dynamically
updates
and reads
SimStruct

Constructor Invokes TimeSim
methods

Calls Draw methods

Calls
Draw
methods

Editor

Let’s have objects in the World call Draw methods and draw
themselves. This makes for a more extensible world because we can
add modules and add their draw methods.

In general, if you have a module that is required to continually change
within the lifetime of the software application, then it is a good idea to
reduce the dependency ON that module.

You can make the extensible module depend on other less frequently
changing modules.

Similarly, we will have objects in World call the simulator methods to
simulate their dynamics.

In this MDD it is clear that World is the central module/ADT. World and
Editor are tightly coupled since the World will need to invoke Editor
methods to edit its objects, and the editor will need to invoke World
methods to update the objects with new ones, or update object
positions.

World objects call methods in Draw and TimeSim to draw or simulate
themselves.

Page 10

10

11

’ “ ”

Viewer Functionality

Main

World SimOut
Viewer

Draw
(Swing)

Editor

Today, we ll focus on the viewer functionality as opposed to
simulator functionality.

Render
(Java 3D)

We’ll focus on the Viewer for this lecture. Note that I have added the
Java 3D viewer here. We will not be talking about Java 3D in this
lecture, but I added it to show that one can have multiple views of the
same information.

Page 11

11

12

Class Hierarchy for Viewer

World
module

Cable
Editor

Editor

Planet
Editor

Cable
Ilustrator

Illustrator

Planet
Ilustrator

Editor
module

Draw
module

World World
Element

abstract class

World
Structure

Array of
instances of
world elements

Contains
WorldStructure,
Simulator

Cable Planet

Let’s look at the class hierarchy for the viewer part of the Space
Elevator (SE) simulator.

We have a World class, a WorldStructure class and an abstract
WorldElement class. A World object contains a WorldStructure object
and a Simulator object.

WorldElements can be instantiated as planets, cables, masses, and
connectors (springs).

We have an Editor class that is subclassed by the editors for various
WorldElements, so we will have a PlanetEditor, CableEditor, etc.

Similarly, we have an WorldIllustrator (Drawer) class that is subclassed
by the various WorldElement illustrators. So we will a PlanetIllustrator,
a CableIllustrator, etc.

Page 12

12

13

•

•
–

Multiple Views

Want to support multiple views

Simulation view Editor view 3-D rendering

Views have to be consistent through simulation!
Change in one view should immediately
propagate to another

Editor view has static parameters for WorldElements such as cable and
planet. These static parameters are the material constants of the
cable, and initial starting position, etc. If there is a change in the
parameters during simulation, for example, because of a break in the
cable, then the simulator should immediately use the changed
parameters.

The simulator view shows the changing positions and velocities of the
WorldElements during simulation.

The numbers shown the simulation view are rendered using Java 3D in
the 3D view.

Page 13

13

Image removed due to copyright restrictions.

14

}

}
}

ssv = ();
…

}

Simple Example of Multiple Observers

interface WorldElementViewer {
void update(property, newvalue);

class 2DElmViewer implements WorldElmViewer {
void update(prop, nval) {

// Swing update code

abstract class WorldElement {
new 2DElmViewer

ssv.update(property, newvalue);

What happens if we want to add a viewer ?

Answer on next slide!

Page 14

14

15

}

}
}

…
ssv = ();

…

}

Multiple Observers

interface WorldViewer {
void update(property, newvalue);

class 3DElmViewer implements WorldElmViewer {
void update(prop, nval) {

// Java 3D update code

abstract class WorldElement {

new 2DElmViewer
psv = new 3DElmViewer();

ssv.update(property, newvalue);
psv.update(property, newvalue);

Need to change all
methods that call update
on the old viewer to also
update new viewer

Page 15

15

16

can

…

…

}
}

Observer Design Pattern

Rather than hardcoding which views to update, the
WorldElement maintain a list of observers that need to
be notified when its state changes

abstract class WorldElement {

List<WorldElmViewer> observers =
new ArrayList<WorldElmViewer>();

for (WorldElmViewer v: observers) {
v.update(property, newvalue);

The Observer design pattern is a behavioral pattern that is described in
the Design Pattern Lecture 18 notes.

Page 16

16

17

’

…

}

} …
}

Observer Design Pattern (contd.)

In order to initialize the observers the WorldElement class
should provide at least two additional methods

Glossed over details, e.g., how update s are actually generated

abstract class WorldElement {

void register(WorldElmViewer viewer) {
observers.add(viewer);

boolean remove(WorldElmViewer viewer) {
return observers.remove(viewer);

Page 17

17

18

 }

,

 java.beans Support

EventListener tagging interface

class PropertyChangeSupport
Provides methods to add listeners, remove listeners,

generate all listeners and fire an existing
PropertyChangeEvent to any registered listeners

(no methods)
interface PropertyChangeListener extends EventListener {

void propertyChange(PropertyChangeEvent evt);

class PropertyChangeEvent
Provides constructor with old and new values

corresponding to the event
Provides methods getOldValue getNewValue

class MyLis implements PropertyChangeListener { .. }

� 9,���3� �39071,.0 �,8 34 209�4/8� �98 43�� 5:75480 �8 94
,��4� 9�0 :80 41 �389,3.041 �3 , 9�50 �36:�7��

if (obj instanceof EventListener) . . .

A bean is a component based on the JavaBeans architecture.

Page 18

18

19

j

().

PropertyChangeSupport Class Methods

PropertyChangeSupport(Ob ect source)
Constructs a PropertyChangeSupport object.

void addPropertyChangeListener(PropertyChangeListener
listener)

Add a PropertyChangeListener to the listener list

void firePropertyChange(String name, int old, int new)
Report an int bound property update to any registered listeners.

PropertyChangeListener [] getPropertyChangeListeners()

Returns an array of all the listeners that were added to the
PropertyChangeSupport object with addPropertyChangeListener

void removePropertyChangeListener(PropertyChangeListener
listener)

Remove a PropertyChangeListener from the listener list.

PropertyChangeSupport is a class in the java.beans package. It
provides support to update listeners when a particular property
changes.

Page 19

19

20

…

Obj

Obj

!
!

! !

…)

…)

…) {

evt

…)

Pictorially

EventListener

PropertyChange
Listener

MyLis

MDD

Tagging interface
(no methods)

Void propertyChange(
 PropertyChangeEvent evt)

implements propertyChange()
to update internal state
of listener

ect Model

MyProperty ect

Property
Change
Support

addPropertyChangeListener(

removePropertyChangeListener(

firePropertyChange(
Construct PropertyChangeEvent
object
On all registered listeners,
 e.g., MyLis, call
 MyLis.propertyChange(evt)

PropertyChange
Event

Constructor
PropertyChangeEvent(
getOldValue(), getNewValue()

Page 20

20

21

class
j

 {

}

void j
“value”

}

Usage

 MyProperty {
private Ob ect val;
PropertyChangeSupport support;
MyProperty(Object ival)

val = ival;
support = new PropertyChangeSupport(this);

 setValue(Ob ect nval) {
support.firePropertyChange(, val, nval);
val = nval; }

public void addListener(PropertyChangeListener Ln) {
support.addPropertyChangeListener(Ln); }

public void removeListener(PropertyChangeListener Ln) {
support.removePropertyChangeListener(Ln); }

Note the use of composition and forwarding in MyProperty. You do not
want to extend PropertyChangeSupport, since you are implementing a
property which is not a true subtype of PropertyChangeSupport.

Page 21

21

22

•

•

Demonstration

Today, a simple demonstration of editing and
viewing functionality (with multiple views)

Tomorrow, more implementation details, Java
3D, and a demo of all existing functionality

Page 22

22

