6.252 NONLINEAR PROGRAMMING LECTURE 15: INTERIOR POINT METHODS LECTURE OUTLINE

- Barrier and Interior Point Methods
- Linear Programs and the Logarithmic Barrier
- Path Following Using Newton's Method

Inequality constrained problem

minimize f(x)subject to $x \in X$, $g_j(x) \le b_j$, j = 1, ..., r,

where f and g_j are continuous and X is closed. We assume that the set

$$S = \left\{ x \in X \mid g_j(x) < 0, \, j = 1, \dots, r \right\}$$

is nonempty and any feasible point is in the closure of *S*.

BARRIER METHOD

• Consider a *barrier function*, that is continuous and goes to ∞ as any one of the constraints $g_j(x)$ approaches 0 from negative values. Examples:

$$B(x) = -\sum_{j=1}^{r} \ln\left\{-g_j(x)\right\}, \quad B(x) = -\sum_{j=1}^{r} \frac{1}{g_j(x)}.$$

• Barrier Method:

$$x^{k} = \arg\min_{x \in S} \left\{ f(x) + \epsilon^{k} B(x) \right\}, \qquad k = 0, 1, \dots,$$

where the parameter sequence $\{\epsilon^k\}$ satisfies $0 < \epsilon^{k+1} < \epsilon^k$ for all k and $\epsilon^k \to 0$.

CONVERGENCE

Every limit point of a sequence $\{x^k\}$ generated by a barrier method is a global minimum of the original constrained problem

Proof: Let $\{\overline{x}\}$ be the limit of a subsequence $\{x^k\}_{k \in K}$. Since $x^k \in S$ and X is closed, \overline{x} is feasible for the original problem. If \overline{x} is not a global minimum, there exists a feasible x^* such that $f(x^*) < f(\overline{x})$ and therefore also an interior point $\tilde{x} \in S$ such that $f(\tilde{x}) < f(\bar{x})$. By the definition of x^k , $f(x^k) + \epsilon^k B(x^k) \leq \epsilon^k B(x^k)$ $f(\tilde{x}) + \epsilon^k B(\tilde{x})$ for all k, so by taking limit

$$f(\overline{x}) + \liminf_{k \to \infty, \ k \in K} \epsilon^k B(x^k) \le f(\overline{x}) < f(\overline{x})$$

Hence $\liminf_{k\to\infty, k\in K} \epsilon^k B(x^k) < 0$. If $\overline{x} \in S$, we have $\lim_{k\to\infty, k\in K} \epsilon^k B(x^k) = 0$, while if \overline{x} lies on the boundary of S, we have by assumption $\lim_{k\to\infty, k\in K} B(x^k) = \infty$. Thus

$$\liminf_{k \to \infty} \epsilon^k B(x^k) \ge 0,$$

- a contradiction.

LINEAR PROGRAMS/LOGARITHMIC BARRIER

• Apply logarithmic barrier to the linear program minimize c'x (LP)

subject to Ax = b, $x \ge 0$,

The method finds for various $\epsilon > 0$,

$$x(\epsilon) = \arg\min_{x\in S} F_{\epsilon}(x) = \arg\min_{x\in S} \left\{ c'x - \epsilon \sum_{i=1}^{n} \ln x_i \right\},\$$

where $S = \{x \mid Ax = b, x > 0\}$. We assume that *S* is nonempty and bounded.

• As $\epsilon \to 0$, $x(\epsilon)$ follows the *central path*

All central paths start at the *analytic center*

$$x_{\infty} = \arg\min_{x\in S} \left\{ -\sum_{i=1}^{n} \ln x_i \right\},$$

and end at optimal solutions of (LP).

PATH FOLLOWING W/ NEWTON'S METHOD

• Newton's method for minimizing F_{ϵ} :

 $\tilde{x} = x + \alpha(\overline{x} - x),$

where \overline{x} is the pure Newton iterate

$$\overline{x} = \arg\min_{Az=b} \left\{ \nabla F_{\epsilon}(x)'(z-x) + \frac{1}{2}(z-x)'\nabla^2 F_{\epsilon}(x)(z-x) \right\}$$

• By straightforward calculation

$$\overline{x} = x - Xq(x,\epsilon),$$

$$q(x,\epsilon) = \frac{Xz}{\epsilon} - e, \quad e = (1\dots1)', \quad z = c - A'\lambda,$$
$$\lambda = (AX^2A')^{-1}AX(Xc - \epsilon e),$$

and X is the diagonal matrix with x_i , i = 1, ..., n along the diagonal.

• View $q(x, \epsilon)$ as the Newton increment $(x-\overline{x})$ transformed by X^{-1} that maps x into e.

• Consider $||q(x,\epsilon)||$ as a *proximity measure* of the current point to the point $x(\epsilon)$ on the central path.

KEY RESULTS

• It is sufficient to minimize F_{ϵ} approximately, up to where $||q(x, \epsilon)|| < 1$.

If
$$x > 0$$
, $Ax = b$, and $||q(x,\epsilon)|| < 1$, then

$$c'x - \min_{Ay=b, y \ge 0} c'y \le \epsilon \left(n + \sqrt{n}\right).$$

• The "termination set" $\{x \mid ||q(x,\epsilon)|| < 1\}$ is part of the region of quadratic convergence of the pure form of Newton's method. In particular, if $||q(x,\epsilon)|| <$ 1, then the pure Newton iterate $\overline{x} = x - Xq(x,\epsilon)$ is an interior point, that is, $\overline{x} \in S$. Furthermore, we have $||q(\overline{x},\epsilon)|| < 1$ and in fact

 $||q(\overline{x},\epsilon)|| \le ||q(x,\epsilon)||^2.$

SHORT STEP METHODS

Following approximately the central path by using a single Newton step for each ϵ^k . If ϵ^k is close to ϵ^{k+1} and x^k is close to the central path, one expects that x^{k+1} obtained from x^k by a single pure Newton step will also be close to the central path.

Proposition Let x > 0, Ax = b, and suppose that for some $\gamma < 1$ we have $||q(x, \epsilon)|| \le \gamma$. Then if $\overline{\epsilon} = (1 - \delta n^{-1/2})\epsilon$ for some $\delta > 0$,

$$\|q(\overline{x},\overline{\epsilon})\| \le \frac{\gamma^2 + \delta}{1 - \delta n^{-1/2}}.$$

In particular, if

$$\delta \le \gamma (1 - \gamma) (1 + \gamma)^{-1},$$

we have $||q(\overline{x}, \overline{\epsilon})|| \leq \gamma$.

Can be used to establish nice complexity results;
but ε must be reduced VERY slowly.

LONG STEP METHODS

- Main features:
 - Decrease ϵ faster than dictated by complexity analysis.
 - Require more than one Newton step per (approximate) minimization.
 - Use line search as in unconstrained Newton's method.
 - Require much smaller number of (approximate) minimizations.

• The methodology generalizes to quadratic programming and convex programming.