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6.252 NONLINEAR PROGRAMMING


LECTURE 15: INTERIOR POINT METHODS


LECTURE OUTLINE


• Barrier and Interior Point Methods 

• Linear Programs and the Logarithmic Barrier 

• Path Following Using Newton’s Method 

Inequality constrained problem 

minimize f(x) 

subject to x ∈ X, gj (x) ≤ bj , j  = 1, . . . , r, 

where f and gj are continuous and X is closed. 
We assume that the set 

S =
 x ∈ X | gj (x) < 0, j  = 1, . . . , r 


is nonempty and any feasible point is in the closure 
of S. 
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BARRIER METHOD


• Consider a barrier function, that is continuous 
and goes to ∞ as any one of the constraints gj (x) 

approaches 0 from negative values. Examples: 

r r 
1 

B(x) =  − ln −gj (x) , B(x) =  − . 
gj (x) 

j=1 j=1 

• Barrier Method: 

x k = arg min f (x) +  �kB(x) , k = 0, 1, . . . ,  
x∈S 

where the parameter sequence {�k} satisfies 0 < 

�k+1 < �k for all k and �k → 0. 

Boundary of S Boundary of S 

ε B(x) 

ε ' B(x) 
ε ' < ε 

S




CONVERGENCE 

Every limit point of a sequence {xk} generated 
by a barrier method is a global minimum of the 
original constrained problem 

Proof: Let {x} be the limit of a subsequence {xk}k∈K . 
Since xk ∈ S and X is closed, x is feasible for the 
original problem. If x is not a global minimum, 
there exists a feasible x ∗ such that f (x ∗) < f  (x) 

and therefore also an interior point x̃ ∈ S such that 
f (x̃) < f  (x). By the definition of xk, f (xk)+�kB(xk) ≤ 
f (˜ x) for all k, so by taking limitx) +  �kB(˜ 

f (x) +  lim inf �kB(x k) ≤ f (x̃) < f  (x) 
k→∞, k∈K


Hence lim infk→∞, k∈K �
kB(xk) < 0. 

If x ∈ S, we have limk→∞, k∈K �
kB(xk) = 0, 

while if x lies on the boundary of S, we have by 
assumption limk→∞, k∈K B(xk) =  ∞. Thus 

lim inf �kB(x k) ≥ 0,

k→∞


– a  contradiction.
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LINEAR PROGRAMS/LOGARITHMIC BARRIER


•	 Apply logarithmic barrier to the linear program 
minimize c ′ x 

(LP)

subject to Ax = b, x ≥ 0,


The method finds for various � >  0,


c
 ,


n 

i=1 

′ x − �
x(�) =  arg min

x∈S 

F�(x) =  arg min 
x∈S 

ln xi


x | Ax = b, x > 0}. We assume that S is 
nonempty and bounded. 
where S =


•	 As � → 0, x(�) follows the central path 

All central paths start at 

Point x(ε) on 
central path 

x∞ 

S 

x * (ε = 0) 

c 

and end at optimal solu

tions of (LP). 

the analytic center


−
 ,


n 

i=1 

x∞ = arg	min 
x∈S 

ln xi
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PATH FOLLOWING W/ NEWTON’S METHOD


•	 Newton’s method for minimizing F�: 
x̃ = x + α(x − x), 

where x is the pure Newton iterate 

∇F�(x)′(z − x) +  1 2 (z − x)′∇2F�(x)(z − x)x = arg min

Az=b 

•	 By straightforward calculation 

x = x − Xq(x, �), 

Xz
− e, e = (1 . . .  1)′ , z = c − A′λ,
q(x, �) = 


,
λ = (AX2A′)−1AX
 Xc − �e


and X is the diagonal matrix with xi, i = 1, . . . , n  

along the diagonal. 

• View q(x, �) as the Newton increment (x−x) trans-
formed by X−1 that maps x into e. 

• Consider ‖q(x, �)‖ as a proximity measure of the 
current point to the point x(�) on the central path. 
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KEY RESULTS 

• It is sufficient to minimize F� approximately, up 
to where ‖q(x, �)‖ < 1. 

* x 

x∞ 

Central Path 

Set {x | ||q(x,ε0)|| < 1} 

x(ε2) 

x(ε1) 

x(ε0) 
x0 

x2 

x1 

If x >  0, Ax = b, and 

‖q(x, �)‖ < 1, then 

S ( √ ) 
c ′ x− min c ′ y ≤ � n+ n . 

Ay=b, y≥0 

• The “termination set” x | ‖q(x, �)‖ < 1 is part 
of the region of quadratic convergence of the pure 
form of Newton’s method. In particular, if ‖q(x, �)‖ < 

1, then the pure Newton iterate x = x − Xq(x, �) is 
an interior point, that is, x ∈ S. Furthermore, we 
have ‖q(x, �)‖ < 1 and in fact 

‖q(x, �)‖ ≤ ‖q(x, �)‖2 . 



SHORT STEP METHODS 

Following approximately the 
* 

Central Path central path by using a sinx 

Set {x | ||q(x,εk)|| < 1} 

x∞ 

x(εk+1) 

x(εk)xk 

xk+1 

Set {x | ||q(x,εk+1)|| < 1} 

S


gle Newton step for each 

�k. If �k is close to �k+1 

and xk is close to the cen

tral path, one expects that 

xk+1 obtained from xk by 

a single pure Newton step 

will also be close to the 

central path. 

Proposition Let x >  0, Ax = b, and suppose that 
for some γ <  1 we have ‖q(x, �)‖ ≤  γ. Then if � = 

(1 − δn−1/2)� for some δ >  0, 

‖q(x, �)‖ ≤ 

γ2 + δ


1 − δn−1/2�
.


In particular, if 
δ ≤ γ(1 − γ)(1 + γ)−1 , 

we have ‖q(x, �)‖ ≤  γ. 

• Can be used to establish nice complexity results; 
but � must be reduced VERY slowly. 



LONG STEP METHODS


• Main features: 
−	 Decrease � faster than dictated by complex-

ity analysis. 
−	 Require more than one Newton step per (ap-

proximate) minimization. 
−	 Use line search as in unconstrained New-

ton’s method. 
−	 Require much smaller number of (approxi-

mate) minimizations. 
*
x *
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S


(a) (b)


• The methodology generalizes to quadratic pro-
gramming and convex programming. 


