6.252 NONLINEAR PROGRAMMING

LECTURE 15: INTERIOR POINT METHODS

LECTURE OUTLINE

- Barrier and Interior Point Methods
- Linear Programs and the Logarithmic Barrier
- Path Following Using Newton's Method

Inequality constrained problem
minimize $f(x)$
subject to $x \in X, \quad g_{j}(x) \leq b_{j}, j=1, \ldots, r$,
where f and g_{j} are continuous and X is closed. We assume that the set

$$
S=\left\{x \in X \mid g_{j}(x)<0, j=1, \ldots, r\right\}
$$

is nonempty and any feasible point is in the closure of S.

BARRIER METHOD

- Consider a barrier function, that is continuous and goes to ∞ as any one of the constraints $g_{j}(x)$ approaches 0 from negative values. Examples:

$$
B(x)=-\sum_{j=1}^{r} \ln \left\{-g_{j}(x)\right\}, \quad B(x)=-\sum_{j=1}^{r} \frac{1}{g_{j}(x)} .
$$

- Barrier Method:

$$
x^{k}=\arg \min _{x \in S}\left\{f(x)+\epsilon^{k} B(x)\right\}, \quad k=0,1, \ldots,
$$

where the parameter sequence $\left\{\epsilon^{k}\right\}$ satisfies $0<$ $\epsilon^{k+1}<\epsilon^{k}$ for all k and $\epsilon^{k} \rightarrow 0$.

CONVERGENCE

Every limit point of a sequence $\left\{x^{k}\right\}$ generated by a barrier method is a global minimum of the original constrained problem
Proof: Let $\{\bar{x}\}$ be the limit of a subsequence $\left\{x^{k}\right\}_{k \in K}$. Since $x^{k} \in S$ and X is closed, \bar{x} is feasible for the original problem. If \bar{x} is not a global minimum, there exists a feasible x^{*} such that $f\left(x^{*}\right)<f(\bar{x})$ and therefore also an interior point $\tilde{x} \in S$ such that $f(\tilde{x})<f(\bar{x})$. By the definition of $x^{k}, f\left(x^{k}\right)+\epsilon^{k} B\left(x^{k}\right) \leq$ $f(\tilde{x})+\epsilon^{k} B(\tilde{x})$ for all k, so by taking limit

$$
f(\bar{x})+\liminf _{k \rightarrow \infty, k \in K} \epsilon^{k} B\left(x^{k}\right) \leq f(\tilde{x})<f(\bar{x})
$$

Hence $\lim \inf _{k \rightarrow \infty, k \in K} \epsilon^{k} B\left(x^{k}\right)<0$.

$$
\text { If } \bar{x} \in S \text {, we have } \lim _{k \rightarrow \infty, k \in K} \epsilon^{k} B\left(x^{k}\right)=0
$$ while if \bar{x} lies on the boundary of S, we have by assumption $\lim _{k \rightarrow \infty, k \in K} B\left(x^{k}\right)=\infty$. Thus

$$
\liminf _{k \rightarrow \infty} \epsilon^{k} B\left(x^{k}\right) \geq 0,
$$

- a contradiction.

LINEAR PROGRAMS/LOGARITHMIC BARRIER

- Apply logarithmic barrier to the linear program

$$
\begin{equation*}
\text { subject to } A x=b, \quad x \geq 0, \tag{LP}
\end{equation*}
$$

The method finds for various $\epsilon>0$,

$$
x(\epsilon)=\arg \min _{x \in S} F_{\epsilon}(x)=\arg \min _{x \in S}\left\{c^{\prime} x-\epsilon \sum_{i=1}^{n} \ln x_{i}\right\},
$$

where $S=\{x \mid A x=b, x>0\}$. We assume that S is nonempty and bounded.

- As $\epsilon \rightarrow 0, x(\epsilon)$ follows the central path

Point $x(\varepsilon)$ on central path

All central paths start at the analytic center

$$
x_{\infty}=\arg \min _{x \in S}\left\{-\sum_{i=1}^{n} \ln x_{i}\right\}
$$

and end at optimal solutions of (LP).

PATH FOLLOWING W/ NEWTON'S METHOD

- Newton's method for minimizing F_{ϵ} :

$$
\tilde{x}=x+\alpha(\bar{x}-x),
$$

where \bar{x} is the pure Newton iterate
$\bar{x}=\arg \min _{A z=b}\left\{\nabla F_{\epsilon}(x)^{\prime}(z-x)+\frac{1}{2}(z-x)^{\prime} \nabla^{2} F_{\epsilon}(x)(z-x)\right\}$

- By straightforward calculation

$$
\begin{gathered}
\bar{x}=x-X q(x, \epsilon), \\
q(x, \epsilon)=\frac{X z}{\epsilon}-e, \quad e=(1 \ldots 1)^{\prime}, \quad z=c-A^{\prime} \lambda, \\
\lambda=\left(A X^{2} A^{\prime}\right)^{-1} A X(X c-\epsilon e),
\end{gathered}
$$

and X is the diagonal matrix with $x_{i}, i=1, \ldots, n$ along the diagonal.

- View $q(x, \epsilon)$ as the Newton increment $(x-\bar{x})$ transformed by X^{-1} that maps x into e.
- Consider $\|q(x, \epsilon)\|$ as a proximity measure of the current point to the point $x(\epsilon)$ on the central path.

KEY RESULTS

- It is sufficient to minimize F_{ϵ} approximately, up to where $\|q(x, \epsilon)\|<1$.

$$
\begin{aligned}
& \text { If } x>0, A x=b \text {, and } \\
& \|q(x, \epsilon)\|<1 \text {, then }
\end{aligned}
$$

$$
c^{\prime} x-\min _{A y=b, y \geq 0} c^{\prime} y \leq \epsilon(n+\sqrt{n}) .
$$

- The "termination set" $\{x \mid\|q(x, \epsilon)\|<1\}$ is part of the region of quadratic convergence of the pure form of Newton's method. In particular, if $\|q(x, \epsilon)\|<$ 1, then the pure Newton iterate $\bar{x}=x-X q(x, \epsilon)$ is an interior point, that is, $\bar{x} \in S$. Furthermore, we have $\|q(\bar{x}, \epsilon)\|<1$ and in fact

$$
\|q(\bar{x}, \epsilon)\| \leq\|q(x, \epsilon)\|^{2}
$$

SHORT STEP METHODS

Following approximately the central path by using a single Newton step for each ϵ^{k}. If ϵ^{k} is close to ϵ^{k+1} and x^{k} is close to the central path, one expects that x^{k+1} obtained from x^{k} by a single pure Newton step will also be close to the central path.

Proposition Let $x>0, A x=b$, and suppose that for some $\gamma<1$ we have $\|q(x, \epsilon)\| \leq \gamma$. Then if $\bar{\epsilon}=$ $\left(1-\delta n^{-1 / 2}\right) \epsilon$ for some $\delta>0$,

$$
\|q(\bar{x}, \bar{\epsilon})\| \leq \frac{\gamma^{2}+\delta}{1-\delta n^{-1 / 2}}
$$

In particular, if

$$
\delta \leq \gamma(1-\gamma)(1+\gamma)^{-1}
$$

we have $\|q(\bar{x}, \bar{\epsilon})\| \leq \gamma$.

- Can be used to establish nice complexity results; but ϵ must be reduced VERY slowly.

LONG STEP METHODS

- Main features:
- Decrease ϵ faster than dictated by complexity analysis.
- Require more than one Newton step per (approximate) minimization.
- Use line search as in unconstrained Newton's method.
- Require much smaller number of (approximate) minimizations.

(a)

(b)
- The methodology generalizes to quadratic programming and convex programming.

