6.252 NONLINEAR PROGRAMMING

LECTURE 14: INTRODUCTION TO DUALITY

LECTURE OUTLINE

- Convex Cost/Linear Constraints
- Duality Theorem
- Linear Programming Duality
- Quadratic Programming Duality

Linear inequality constrained problem
minimize $f(x)$
subject to $a_{j}^{\prime} x \leq b_{j}, \quad j=1, \ldots, r$,
where f is convex and continuously differentiable over \Re^{n}.

LAGRANGE MULTIPLIER RESULT

Let $J \subset\{1, \ldots, r\}$. Then x^{*} is a global min if and only if x^{*} is feasible and there exist $\mu_{j}^{*} \geq 0, j \in J$, such that $\mu_{j}^{*}=0$ for all $j \in J \notin A\left(x^{*}\right)$, and

$$
x^{*}=\arg \min _{\substack{a_{j}^{\prime} x \leq b_{j} \\ j \notin J}}\left\{f(x)+\sum_{j \in J} \mu_{j}^{*}\left(a_{j}^{\prime} x-b_{j}\right)\right\} .
$$

Proof: Assume x^{*} is global min. Then there exist $\mu_{j}^{*} \geq 0$, such that $\mu_{j}^{*}\left(a_{j}^{\prime} x^{*}-b_{j}\right)=0$ for all j and $\nabla f\left(x^{*}\right)+\sum_{j=1}^{r} \mu_{j}^{*} a_{j}=0$, implying

$$
x^{*}=\arg \min _{x \in \Re^{n}}\left\{f(x)+\sum_{j=1}^{r} \mu_{j}^{*}\left(a_{j}^{\prime} x-b_{j}\right)\right\} .
$$

Since $\mu_{j}^{*}\left(a_{j}^{\prime} x^{*}-b_{j}\right)=0$ for all j,

$$
f\left(x^{*}\right)=\min _{x \in \Re}\left\{f(x)+\sum_{j=1}^{r} \mu_{j}^{*}\left(a_{j}^{\prime} x-b_{j}\right)\right\} .
$$

Since $\mu_{j}^{*}\left(a_{j}^{\prime} x-b_{j}\right) \leq 0$ if $a_{j}^{\prime} x-b_{j} \leq 0$,

$$
\begin{aligned}
f\left(x^{*}\right) & \leq \min _{\substack{a_{j}^{\prime} x \leq b_{j} \\
j \notin J}}\left\{f(x)+\sum_{j=1}^{r} \mu_{j}^{*}\left(a_{j}^{\prime} x-b_{j}\right)\right\} \\
& \leq \min _{\substack{a_{j}^{\prime} x \leq b_{j} \\
j \notin J}}\left\{f(x)+\sum_{j \in J} \mu_{j}^{*}\left(a_{j}^{\prime} x-b_{j}\right)\right\} .
\end{aligned}
$$

PROOF (CONTINUED)

Conversely, if x^{*} is feasible and there exist scalars $\mu_{j}^{*}, j \in J$ with the stated properties, then
$\left(\nabla f\left(x^{*}\right)+\sum_{j \in J} \mu_{j}^{*} a_{j}\right)^{\prime}\left(x-x^{*}\right) \geq 0, \quad$ if $a_{j}^{\prime} x \leq b_{j}, \forall j \notin J$.
For all x that are feasible for the original problem, $a_{j}^{\prime} x \leq b_{j}=a_{j}^{\prime} x^{*}$ for all $j \in A\left(x^{*}\right)$. Since $\mu_{j}^{*}=0$ if $j \in J$ and $j \notin A\left(x^{*}\right)$,

$$
\sum_{j \in J} \mu_{j}^{*} a_{j}^{\prime}\left(x-x^{*}\right) \leq 0,
$$

which implies

$$
\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq 0
$$

for all feasible x. Hence x^{*} is a global min. Q.E.D.

- Note that the same set of μ_{j}^{*} works for all index sets J.

THE DUAL PROBLEM

- Consider the problem

$$
\min _{x \in X, a_{j}^{\prime} x \leq b_{j}, j=1, \ldots, r} f(x)
$$

where f is convex and cont. differentiable over \Re^{n} and X is polyhedral.

- Define the dual function q : $\Re^{r} \mapsto[-\infty, \infty)$

$$
q(\mu)=\inf _{x \in X} L(x, \mu)=\inf _{x \in X}\left\{f(x)+\sum_{j=1}^{r} \mu_{j}\left(a_{j}^{\prime} x-b_{j}\right)\right\}
$$

and the dual problem

$$
\max _{\mu \geq 0} q(\mu) .
$$

- If X is bounded, the dual function takes real values. In general, $q(\mu)$ can take the value $-\infty$. The "effective" constraint set of the dual is

$$
Q=\{\mu \mid \mu \geq 0, q(\mu)>-\infty\} .
$$

DUALITY THEOREM

(a) If the primal problem has an optimal solution, the dual problem also has an optimal solution and the optimal values are equal.
(b) x^{*} is primal-optimal and μ^{*} is dual-optimal if and only if x^{*} is primal-feasible, $\mu^{*} \geq 0$, and

$$
f\left(x^{*}\right)=L\left(x^{*}, \mu^{*}\right)=\min _{x \in X} L\left(x, \mu^{*}\right) .
$$

Proof: (a) Let x^{*} be a primal optimal solution. For all primal feasible x, and all $\mu \geq 0$, we have $\mu_{j}^{\prime}\left(a_{j}^{\prime} x-\right.$ $\left.b_{j}\right) \leq 0$ for all j, so

$$
\begin{aligned}
q(\mu) & \leq \inf _{x \in X, a_{j}^{\prime} x \leq b_{j}, j=1, \ldots, r}\left\{f(x)+\sum_{j=1}^{r} \mu_{j}\left(a_{j}^{\prime} x-b_{j}\right)\right\} \\
& \leq \inf _{x \in X, a_{j}^{\prime} x \leq b_{j}, j=1, \ldots, r} f(x)=f\left(x^{*}\right) .
\end{aligned}
$$

By L-Mult. Th., there exists $\mu^{*} \geq 0$ such that $\mu_{j}^{*}\left(a_{j}^{\prime} x^{*}-\right.$ $\left.b_{j}\right)=0$ for all j, and $x^{*}=\arg \min _{x \in X} L\left(x, \mu^{*}\right)$, so

$$
q\left(\mu^{*}\right)=L\left(x^{*}, \mu^{*}\right)=f\left(x^{*}\right)+\sum_{j=1}^{r} \mu_{j}^{*}\left(a_{j}^{\prime} x^{*}-b_{j}\right)=f\left(x^{*}\right) .
$$

PROOF (CONTINUED)

(b) If x^{*} is primal-optimal and μ^{*} is dual-optimal, by part (a)

$$
f\left(x^{*}\right)=q\left(\mu^{*}\right),
$$

which when combined with Eq. (*), yields

$$
f\left(x^{*}\right)=L\left(x^{*}, \mu^{*}\right)=q\left(\mu^{*}\right)=\min _{x \in X} L\left(x, \mu^{*}\right) .
$$

Conversely, the relation $f\left(x^{*}\right)=\min _{x \in X} L\left(x, \mu^{*}\right)$ is written as $f\left(x^{*}\right)=q\left(\mu^{*}\right)$, and since x^{*} is primalfeasible and $\mu^{*} \geq 0$, Eq. (${ }^{*}$) implies that x^{*} is primaloptimal and μ^{*} is dual-optimal. Q.E.D.

- Linear equality constraints are treated similar to inequality constraints, except that the sign of the Lagrange multipliers is unrestricted:

Primal:

$$
\min _{x \in X, e_{i}^{\prime} x=d_{i}, i=1, \ldots, m a_{j}^{\prime} x \leq b_{j}, j=1, \ldots, r} f(x)
$$

Dual: $\max _{\lambda \in \Re^{m}, \mu \geq 0} q(\lambda, \mu)=\max _{\lambda \in \Re^{m}, \mu \geq 0} \inf _{x \in X} L(x, \lambda, \mu)$.

THE DUAL OF A LINEAR PROGRAM

- Consider the linear program
minimize $c^{\prime} x$
subject to $e_{i}^{\prime} x=d_{i}, \quad i=1, \ldots, m, \quad x \geq 0$
- Dual function

$$
q(\lambda)=\inf _{x \geq 0}\left\{\sum_{j=1}^{n}\left(c_{j}-\sum_{i=1}^{m} \lambda_{i} e_{i j}\right) x_{j}+\sum_{i=1}^{m} \lambda_{i} d_{i}\right\} .
$$

- If $c_{j}-\sum_{i=1}^{m} \lambda_{i} e_{i j} \geq 0$ for all j, the infimum is attained for $x=0$, and $q(\lambda)=\sum_{i=1}^{m} \lambda_{i} d_{i}$. If $c_{j}-$ $\sum_{i=1}^{m} \lambda_{i} e_{i j}<0$ for some j, the expression in braces can be arbitrarily small by taking x_{j} suff. large, so $q(\lambda)=-\infty$. Thus, the dual is

$$
\begin{array}{ll}
\text { maximize } & \sum_{i=1}^{m} \lambda_{i} d_{i} \\
\text { subject to } & \sum_{i=1}^{m} \lambda_{i} e_{i j} \leq c_{j}, \quad j=1, \ldots, n .
\end{array}
$$

THE DUAL OF A QUADRATIC PROGRAM

- Consider the quadratic program minimize $\frac{1}{2} x^{\prime} Q x+c^{\prime} x$ subject to $A x \leq b$,
where Q is a given $n \times n$ positive definite symmetric matrix, A is a given $r \times n$ matrix, and $b \in \Re^{r}$ and $c \in \Re^{n}$ are given vectors.
- Dual function:

$$
q(\mu)=\inf _{x \in \Re^{n}}\left\{\frac{1}{2} x^{\prime} Q x+c^{\prime} x+\mu^{\prime}(A x-b)\right\} .
$$

The infimum is attained for $x=-Q^{-1}\left(c+A^{\prime} \mu\right)$, and, after substitution and calculation,

$$
q(\mu)=-\frac{1}{2} \mu^{\prime} A Q^{-1} A^{\prime} \mu-\mu^{\prime}\left(b+A Q^{-1} c\right)-\frac{1}{2} c^{\prime} Q^{-1} c .
$$

- The dual problem, after a sign change, is minimize $\frac{1}{2} \mu^{\prime} P \mu+t^{\prime} \mu$ subject to $\mu \geq 0$,
where $P=A Q^{-1} A^{\prime}$ and $t=b+A Q^{-1} c$.

