6.252 NONLINEAR PROGRAMMING

LECTURE 14: INTRODUCTION TO DUALITY

LECTURE OUTLINE

- Convex Cost/Linear Constraints
- Duality Theorem
- Linear Programming Duality
- Quadratic Programming Duality

Linear inequality constrained problem

minimize f(x)subject to $a'_j x \leq b_j$, $j = 1, \dots, r$,

where f is convex and continuously differentiable over \Re^n .

LAGRANGE MULTIPLIER RESULT

Let $J \subset \{1, ..., r\}$. Then x^* is a global min if and only if x^* is feasible and there exist $\mu_j^* \ge 0$, $j \in J$, such that $\mu_j^* = 0$ for all $j \in J \notin A(x^*)$, and

$$x^{*} = \arg \min_{\substack{a'_{j} x \le b_{j} \\ j \notin J}} \left\{ f(x) + \sum_{j \in J} \mu_{j}^{*}(a'_{j}x - b_{j}) \right\}$$

Proof: Assume x^* is global min. Then there exist $\mu_j^* \ge 0$, such that $\mu_j^*(a_j'x^* - b_j) = 0$ for all j and $\nabla f(x^*) + \sum_{j=1}^r \mu_j^* a_j = 0$, implying $x^* = \arg\min_{x \in \Re^n} \left\{ f(x) + \sum \mu_j^* (a'_j x - b_j) \right\}.$ Since $\mu_i^*(a'_i x^* - b_j) = 0$ for all j, $f(x^*) = \min_{x \in \Re^n} \left\{ f(x) + \sum \mu_j^* (a'_j x - b_j) \right\}.$ Since $\mu_{i}^{*}(a_{j}'x - b_{j}) \leq 0$ if $a_{j}'x - b_{j} \leq 0$, $f(x^*) \le \min_{\substack{a'_j x \le b_j}} \left\{ f(x) + \sum_{j=1} \mu_j^* (a'_j x - b_j) \right\}$ $\leq \min_{\substack{a'_j x \leq b_j \\ i \neq J}} \left\{ f(x) + \sum_{j \in J} \mu_j^*(a'_j x - b_j) \right\}.$ $i \notin J$

PROOF (CONTINUED)

Conversely, if x^* is feasible and there exist scalars μ_j^* , $j \in J$ with the stated properties, then

$$\left(\nabla f(x^*) + \sum_{j \in J} \mu_j^* a_j\right)'(x - x^*) \ge 0, \quad \text{if } a'_j x \le b_j, \ \forall \ j \notin J.$$

For all x that are feasible for the original problem, $a'_j x \leq b_j = a'_j x^*$ for all $j \in A(x^*)$. Since $\mu_j^* = 0$ if $j \in J$ and $j \notin A(x^*)$,

$$\sum_{j\in J}\mu_j^*a_j'(x-x^*)\le 0,$$

which implies

$$\nabla f(x^*)'(x-x^*) \ge 0$$

for all feasible x. Hence x^* is a global min. Q.E.D.

• Note that the same set of μ_j^* works for all index sets *J*.

THE DUAL PROBLEM

• Consider the problem

$$\min_{x \in X, a'_j x \le b_j, j=1,\ldots,r} f(x)$$

where f is convex and cont. differentiable over \Re^n and X is polyhedral.

• Define the dual function $q: \Re^r \mapsto [-\infty, \infty)$

$$q(\mu) = \inf_{x \in X} L(x,\mu) = \inf_{x \in X} \left\{ f(x) + \sum_{j=1}^{r} \mu_j (a'_j x - b_j) \right\}$$

and the dual problem

$$\max_{\mu \ge 0} q(\mu).$$

• If *X* is bounded, the dual function takes real values. In general, $q(\mu)$ can take the value $-\infty$. The "effective" constraint set of the dual is $Q = \{\mu \mid \mu \ge 0, \ q(\mu) > -\infty\}.$

DUALITY THEOREM

(a) If the primal problem has an optimal solution, the dual problem also has an optimal solution and the optimal values are equal. (b) x^* is primal-optimal and μ^* is dual-optimal if and only if x^* is primal-feasible, $\mu^* \ge 0$, and $f(x^*) = L(x^*, \mu^*) = \min_{x \in X} L(x, \mu^*).$

Proof: (a) Let x^* be a primal optimal solution. For all primal feasible x, and all $\mu \ge 0$, we have $\mu'_j(a'_j x - b_j) \le 0$ for all j, so

$$q(\mu) \leq \inf_{x \in X, a'_{j} x \leq b_{j}, j=1,...,r} \left\{ f(x) + \sum_{j=1}^{\prime} \mu_{j}(a'_{j} x - b_{j}) \right\}$$

$$\leq \inf_{x \in X, a'_{j} x \leq b_{j}, j=1,...,r} f(x) = f(x^{*}).$$

(*)

By L-Mult. Th., there exists $\mu^* \ge 0$ such that $\mu_j^*(a'_j x^* - b_j) = 0$ for all j, and $x^* = \arg \min_{x \in X} L(x, \mu^*)$, so

r

$$q(\mu^*) = L(x^*, \mu^*) = f(x^*) + \sum_{j=1}^{\infty} \mu_j^* (a'_j x^* - b_j) = f(x^*).$$

PROOF (CONTINUED)

(b) If x^* is primal-optimal and μ^* is dual-optimal, by part (a)

 $f(x^*) = q(\mu^*),$

which when combined with Eq. (*), yields

$$f(x^*) = L(x^*, \mu^*) = q(\mu^*) = \min_{x \in X} L(x, \mu^*).$$

Conversely, the relation $f(x^*) = \min_{x \in X} L(x, \mu^*)$ is written as $f(x^*) = q(\mu^*)$, and since x^* is primalfeasible and $\mu^* \ge 0$, Eq. (*) implies that x^* is primaloptimal and μ^* is dual-optimal. Q.E.D.

 Linear equality constraints are treated similar to inequality constraints, except that the sign of the Lagrange multipliers is unrestricted:

Primal:
$$\min_{x \in X, e'_i x = d_i, i = 1, ..., m \; a'_j x \leq b_j, j = 1, ..., r} f(x)$$

Dual: $\max_{\lambda \in \Re^m, \, \mu \ge 0} q(\lambda, \mu) = \max_{\lambda \in \Re^m, \, \mu \ge 0} \inf_{x \in X} L(x, \lambda, \mu).$

THE DUAL OF A LINEAR PROGRAM

Consider the linear program

minimize c'x

subject to $e'_i x = d_i, \quad i = 1, \dots, m, \qquad x \ge 0$

Dual function

$$q(\lambda) = \inf_{x \ge 0} \left\{ \sum_{j=1}^{n} \left(c_j - \sum_{i=1}^{m} \lambda_i e_{ij} \right) x_j + \sum_{i=1}^{m} \lambda_i d_i \right\}.$$

• If $c_j - \sum_{i=1}^m \lambda_i e_{ij} \ge 0$ for all j, the infimum is attained for x = 0, and $q(\lambda) = \sum_{i=1}^m \lambda_i d_i$. If $c_j - \sum_{i=1}^m \lambda_i e_{ij} < 0$ for some j, the expression in braces can be arbitrarily small by taking x_j suff. large, so $q(\lambda) = -\infty$. Thus, the dual is

maximize
$$\sum_{i=1}^{m} \lambda_i d_i$$

subject to $\sum_{i=1}^{m} \lambda_i e_{ij} \le c_j, \qquad j = 1, \dots, n.$

THE DUAL OF A QUADRATIC PROGRAM

 Consider the quadratic program minimize ¹/₂x'Qx + c'x subject to Ax ≤ b,

where Q is a given $n \times n$ positive definite symmetric matrix, A is a given $r \times n$ matrix, and $b \in \Re^r$ and $c \in \Re^n$ are given vectors.

• Dual function:

$$q(\mu) = \inf_{x \in \Re^n} \left\{ \frac{1}{2} x' Q x + c' x + \mu' (A x - b) \right\}.$$

The infimum is attained for $x = -Q^{-1}(c + A'\mu)$, and, after substitution and calculation,

$$q(\mu) = -\frac{1}{2}\mu' A Q^{-1} A' \mu - \mu' (b + A Q^{-1} c) - \frac{1}{2}c' Q^{-1} c.$$

 The dual problem, after a sign change, is minimize ¹/₂μ'Pμ + t'μ subject to μ ≥ 0,

where $P = AQ^{-1}A'$ and $t = b + AQ^{-1}c$.