6.252 NONLINEAR PROGRAMMING

LECTURE 19: DUALITY THEOREMS

LECTURE OUTLINE

- Duality and L-multipliers (continued)
- Consider the problem
minimize $f(x)$
subject to $x \in X, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, r$,
assuming $-\infty<f^{*}<\infty$.
- μ^{*} is a Lagrange multiplier if $\mu^{*} \geq 0$ and $f^{*}=$ $\inf _{x \in X} L\left(x, \mu^{*}\right)$.
- The dual problem is

$$
\begin{array}{ll}
\text { maximize } & q(\mu) \\
\text { subject to } & \mu \geq 0,
\end{array}
$$

where q is the dual function $q(\mu)=\inf _{x \in X} L(x, \mu)$.

DUAL OPTIMALITY

- Weak Duality Theorem: $q^{*} \leq f^{*}$. - Lagrange Multipliers and Dual Optimal Solutions:
(a) If there is no duality gap, the set of Lagrange multipliers is equal to the set of optimal dual solutions.
(b) If there is a duality gap, the set of Lagrange multipliers is empty.

DUALITY PROPERTIES

- Optimality Conditions: $\left(x^{*}, \mu^{*}\right)$ is an optimal solutionLagrange multiplier pair if and only if

$$
\begin{aligned}
x^{*} \in X, \quad g\left(x^{*}\right) \leq 0, & \text { (Primal Feasibility) }, \\
\mu^{*} \geq 0, & \text { (Dual Feasibility), } \\
x^{*}=\arg \min _{x \in X} L\left(x, \mu^{*}\right), & \text { (Lagrangian Optimality) }, \\
\mu_{j}^{*} g_{j}\left(x^{*}\right)=0, \quad j=1, \ldots, r, & \text { (Compl. Slackness). }
\end{aligned}
$$

- Saddle Point Theorem: $\left(x^{*}, \mu^{*}\right)$ is an optimal solution-Lagrange multiplier pair if and only if $x^{*} \in$ $X, \mu^{*} \geq 0$, and $\left(x^{*}, \mu^{*}\right)$ is a saddle point of the Lagrangian, in the sense that

$$
L\left(x^{*}, \mu\right) \leq L\left(x^{*}, \mu^{*}\right) \leq L\left(x, \mu^{*}\right), \quad \forall x \in X, \mu \geq 0 .
$$

INFEASIBLE AND UNBOUNDED PROBLEMS

(a)

$$
\begin{aligned}
& \min f(x)=1 / x \\
& \text { s.t. } g(x)=x \leq 0 \\
& \quad x \in X=\{x \mid x>0\} \\
& f^{*}=\infty, \quad q^{*}=\infty
\end{aligned}
$$

$\min f(x)=x$
s.t. $g(x)=x^{2} \leq 0$
$x \in X=\{x \mid x>0\}$
$f^{*}=\infty, \quad q^{*}=0$
(b)

$\min f(x)=x_{1}+x_{2}$
s.t. $g(x)=x_{1} \leq 0$
$x \in X=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>0\right\}$
$f^{*}=\infty, \quad q^{*}=-\infty$

EXTENSIONS AND APPLICATIONS

- Equality constraints $h_{i}(x)=0, i=1, \ldots, m$, can be converted into the two inequality constraints

$$
h_{i}(x) \leq 0, \quad-h_{i}(x) \leq 0 .
$$

- Separable problems:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{m} f_{i}\left(x_{i}\right) \\
\text { subject to } & \sum_{i=1}^{m} g_{i j}\left(x_{i}\right) \leq 0, \quad j=1, \ldots, r, \\
& x_{i} \in X_{i}, \quad i=1, \ldots, m .
\end{array}
$$

- Separable problem with a single constraint:
$\operatorname{minimize} \sum_{i=1}^{n} f_{i}\left(x_{i}\right)$
subject to $\quad \sum_{i=1}^{n} x_{i} \geq A, \quad \alpha_{i} \leq x_{i} \leq \beta_{i}, \quad \forall i$.

DUALITY THEOREM I FOR CONVEX PROBLEMS

- Strong Duality Theorem - Linear Constraints: Assume that the problem
minimize $f(x)$
subject to $x \in X, \quad a_{i}^{\prime} x-b_{i}=0, \quad i=1, \ldots, m$,

$$
e_{j}^{\prime} x-d_{j} \leq 0, \quad j=1, \ldots, r,
$$

is feasible and its optimal value f^{*} is finite. Let also f be convex over \Re^{n} and let X be polyhedral. Then there exists at least one Lagrange multiplier and there is no duality gap.

- Proof Issues
- Application to Linear Programming

COUNTEREXAMPLE

- A Convex Problem with a Duality Gap: Consider the two-dimensional problem
minimize $f(x)$
subject to $x_{1}=0, \quad x \in X=\{x \mid x \geq 0\}$,
where

$$
f(x)=e^{-\sqrt{x_{1} x_{2}}}, \quad \forall x \in X,
$$

and $f(x)$ is arbitrarily defined for $x \notin X$.

- f is convex over X (its Hessian is positive definite in the interior of X), and $f^{*}=1$.
- Also, for all $\mu \geq 0$ we have

$$
q(\mu)=\inf _{x \geq 0}\left\{e^{-\sqrt{x_{1} x_{2}}}+\mu x_{1}\right\}=0,
$$

since the expression in braces is nonnegative for $x \geq 0$ and can approach zero by taking $x_{1} \rightarrow 0$ and $x_{1} x_{2} \rightarrow \infty$. It follows that $q^{*}=0$.

DUALITY THEOREM II FOR CONVEX PROBLEMS

- Consider the problem
minimize $f(x)$
subject to $x \in X$,

$$
g_{j}(x) \leq 0, \quad j=1, \ldots, r .
$$

- Assume that X is convex and the functions $f: \Re^{n} \mapsto \Re, g_{j}: \Re^{n} \mapsto \Re$ are convex over X. Furthermore, the optimal value f^{*} is finite and there exists a vector $\bar{x} \in X$ such that

$$
g_{j}(\bar{x})<0, \quad \forall j=1, \ldots, r .
$$

- Strong Duality Theorem: There exists at least one Lagrange multiplier and there is no duality gap.
- Extension to linear equality constraints.

