
6.252 NONLINEAR PROGRAMMING


LECTURE 19: DUALITY THEOREMS


LECTURE OUTLINE


• Duality and L-multipliers (continued) 

• Consider the problem 

minimize f (x)


subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,


assuming −∞ < f  ∗ < ∞. 

• µ ∗ is a Lagrange multiplier if µ ∗ ≥ 0 and f∗ = 

infx∈X L(x, µ ∗). 

• The dual problem is 

maximize q(µ) 

subject to µ ≥ 0, 

where q is the dual function q(µ) =  infx∈X L(x, µ). 



DUAL OPTIMALITY
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• Weak Duality Theorem: q ∗ ≤ f ∗ . 

• Lagrange Multipliers and Dual Optimal Solu-
tions: 

(a)	 If there is no duality gap, the set of Lagrange 
multipliers is equal to the set of optimal dual 
solutions. 

(b)	 If there is a duality gap, the set of Lagrange 
multipliers is empty. 



DUALITY PROPERTIES


• Optimality Conditions: (x ∗ , µ  ∗) is an optimal solution-
Lagrange multiplier pair if and only if 

∗ ∗ x ∈ X, g(x ) ≤ 0, (Primal Feasibility), 
∗ µ ≥ 0, (Dual Feasibility), 

∗ ∗ x = arg min L(x, µ ), (Lagrangian Optimality), 
x∈X 

∗ ∗ µj gj(x ) = 0, j = 1, . . . , r, (Compl. Slackness). 

• Saddle Point Theorem: (x ∗ , µ  ∗)  is an optimal 
solution-Lagrange multiplier pair if and only if x ∗ ∈ 
X, µ ∗ ≥ 0, and (x ∗ , µ  ∗) is a saddle point of the La-
grangian, in the sense that 

∗ ∗ ∗ ∗ L(x , µ) ≤ L(x , µ  ) ≤ L(x, µ ), ∀ x ∈ X, µ ≥ 0. 



INFEASIBLE AND UNBOUNDED PROBLEMS
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S = {(g(x),f(x)) | x ∈ X} 

min f(x) = 1/x 

s.t. g(x) = x ≤ 0 
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EXTENSIONS AND APPLICATIONS


• Equality constraints hi(x) = 0, i = 1, . . . , m, can 
be converted into the two inequality constraints 

hi(x) ≤ 0, −hi(x) ≤ 0. 

• Separable problems: 

minimize


subject to


fi(xi) 

i=1 

gij (xi) ≤ 0, j = 1, . . . , r, 

i=1 

xi ∈ Xi, i = 1, . . . , m. 

• Separable problem with a single constraint: 

n 

minimize fi(xi) 

i=1 

n 

subject to xi ≥ A, αi ≤ xi ≤ βi, ∀ i. 

i=1 



DUALITY THEOREM I FOR CONVEX PROBLEMS


• Strong Duality Theorem - Linear Constraints: 
Assume that the problem 

minimize f (x) 

subject to x ∈ X, ai 
′ x − bi = 0, i  = 1, . . . , m, 

e
′
j x − dj ≤ 0, j  = 1, . . . , r,


is feasible and its optimal value f ∗ is finite. Let 
also f be convex over �n and let X be polyhedral. 
Then there exists at least one Lagrange multiplier 
and there is no duality gap. 

• Proof Issues 

• Application to Linear Programming 
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COUNTEREXAMPLE


• A Convex Problem with a Duality Gap: Consider 
the two-dimensional problem 

minimize f (x) 

subject to x1 = 0, x ∈ X = {x | x ≥ 0}, 

where 
f (x) =  e −

√ 
x1x2 , ∀ x ∈ X, 

and f (x) is arbitrarily defined for x /∈ X. 

• f is convex over X (its Hessian is positive definite 
in the interior of X), and f ∗ = 1. 

• Also, for all µ ≥ 0 we have 

q(µ) =  inf e −
√ 

x1x2 + µx1 = 0, 
x≥0 

since the expression in braces is nonnegative for 
x ≥ 0 and can approach zero by taking x1 → 0 and 
x1x2 → ∞. It follows that q∗ = 0. 



DUALITY THEOREM II FOR CONVEX PROBLEMS


• Consider the problem 

minimize f (x) 

subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r. 

• Assume that X is convex and the functions 
f : �n �→ �, gj : �n �→ �  are convex over X. Fur-
thermore, the optimal value f∗ is finite and there 
exists a vector x̄ ∈ X such that 

gj (x̄) < 0, ∀ j = 1, . . . , r. 

• Strong Duality Theorem: There exists at least 
one Lagrange multiplier and there is no duality 
gap. 

• Extension to linear equality constraints. 


