6.252 NONLINEAR PROGRAMMING

ECTURE 17: AUGMENTED LAGRANGIAN METHODS

LECTURE OUTLINE

- Multiplier Methods

- Consider the equality constrained problem minimize $f(x)$
subject to $h(x)=0$,
where $f: \Re^{n} \rightarrow \Re$ and $h: \Re^{n} \rightarrow \Re^{m}$ are continuously differentiable.
- The (1st order) multiplier method finds

$$
x^{k}=\arg \min _{x \in \Re^{n}} L_{c^{k}}\left(x, \lambda^{k}\right) \equiv f(x)+\lambda^{k^{\prime}} h(x)+\frac{c^{k}}{2}\|h(x)\|^{2}
$$

and updates λ^{k} using

$$
\lambda^{k+1}=\lambda^{k}+c^{k} h\left(x^{k}\right)
$$

CONVEX EXAMPLE

- Problem: $\min _{x_{1}=1}(1 / 2)\left(x_{1}^{2}+x_{2}^{2}\right)$ with optimal solution $x^{*}=(1,0)$ and Lagr. multiplier $\lambda^{*}=-1$.
- We have

$$
\begin{gathered}
x^{k}=\arg \min _{x \in \Re^{n}} L_{c^{k}}\left(x, \lambda^{k}\right)=\left(\frac{c^{k}-\lambda^{k}}{c^{k}+1}, 0\right) \\
\lambda^{k+1}=\lambda^{k}+c^{k}\left(\frac{c^{k}-\lambda^{k}}{c^{k}+1}-1\right) \\
\lambda^{k+1}-\lambda^{*}=\frac{\lambda^{k}-\lambda^{*}}{c^{k}+1}
\end{gathered}
$$

- We see that:
$-\lambda^{k} \rightarrow \lambda^{*}=-1$ and $x^{k} \rightarrow x^{*}=(1,0)$ for every nondecreasing sequence $\left\{c^{k}\right\}$. It is NOT necessary to increase c^{k} to ∞.
- The convergence rate becomes faster as c^{k} becomes larger; in fact $\left\{\left|\lambda^{k}-\lambda^{*}\right|\right\}$ converges superlinearly if $c^{k} \rightarrow \infty$.

NONCONVEX EXAMPLE

- Problem: $\min _{x_{1}=1}(1 / 2)\left(-x_{1}^{2}+x_{2}^{2}\right)$ with optimal soIution $x^{*}=(1,0)$ and Lagr. multiplier $\lambda^{*}=1$.
- We have

$$
x^{k}=\arg \min _{x \in \Re^{n}} L_{c^{k}}\left(x, \lambda^{k}\right)=\left(\frac{c^{k}-\lambda^{k}}{c^{k}-1}, 0\right)
$$

provided $c^{k}>1$ (otherwise the min does not exist)

$$
\begin{gathered}
\lambda^{k+1}=\lambda^{k}+c^{k}\left(\frac{c^{k}-\lambda^{k}}{c^{k}-1}-1\right) \\
\lambda^{k+1}-\lambda^{*}=-\frac{\lambda^{k}-\lambda^{*}}{c^{k}-1}
\end{gathered}
$$

- We see that:
- No need to increase c^{k} to ∞ for convergence; doing so results in faster convergence rate.
- To obtain convergence, c^{k} must eventually exceed the threshold 2.

THE PRIMAL FUNCTIONAL

- Let $\left(x^{*}, \lambda^{*}\right)$ be a regular local min-Lagr. pair satisfying the 2nd order suff. conditions are satisfied.
- The primal functional

$$
p(u)=\min _{h(x)=u} f(x),
$$

defined for u in an open sphere centered at $u=0$, and we have

$$
p(0)=f\left(x^{*}\right), \quad \nabla p(0)=-\lambda^{*},
$$

(a)

$$
p(u)=-\frac{1}{2}(u+1)^{2}
$$

(b)
$p(u)=\min _{x_{1}-1=u} \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right), \quad p(u)=\min _{x_{1}-1=u} \frac{1}{2}\left(-x_{1}^{2}+x_{2}^{2}\right)$

AUGM. LAGRANGIAN MINIMIZATION

- Break down the minimization of $L_{c}(\cdot, \lambda)$:
$\min _{x} L_{c}(x, \lambda)=\min _{u} \min _{h(x)=u}\left\{f(x)+\lambda^{\prime} h(x)+\frac{c}{2}\|h(x)\|^{2}\right\}$

$$
=\min _{u}\left\{p(u)+\lambda^{\prime} u+\frac{c}{2}\|u\|^{2}\right\}
$$

where the minimization above is understood to be local in a neighborhood of $u=0$.

- Interpretation of this minimization:

- If c is suf. large, $p(u)+\lambda^{\prime} u+\frac{c}{2}\|u\|^{2}$ is convex in a neighborhood of 0 . Also, for $\lambda \approx \lambda^{*}$ and large c, the value $\min _{x} L_{c}(x, \lambda) \approx p(0)=f\left(x^{*}\right)$.

INTERPRETATION OF THE METHOD

- Geometric interpretation of the iteration

$$
\lambda^{k+1}=\lambda^{k}+c^{k} h\left(x^{k}\right)
$$

- If λ^{k} is sufficiently close to λ^{*} and/or c^{k} is suf. large, λ^{k+1} will be closer to λ^{*} than λ^{k}.
- c^{k} need not be increased to ∞ in order to obtain convergence; it is sufficient that c^{k} eventually exceeds some threshold level.
- If $p(u)$ is linear, convergence to λ^{*} will be achieved in one iteration.

COMPUTATIONAL ASPECTS

- Key issue is how to select $\left\{c^{k}\right\}$.
- c^{k} should eventually become larger than the "threshold" of the given problem.
- c^{0} should not be so large as to cause illconditioning at the 1 st minimization.
- c^{k} should not be increased so fast that too much ill-conditioning is forced upon the unconstrained minimization too early.
- c^{k} should not be increased so slowly that the multiplier iteration has poor convergence rate.
- A good practical scheme is to choose a moderate value c^{0}, and use $c^{k+1}=\beta c^{k}$, where β is a scalar with $\beta>1$ (typically $\beta \in[5,10]$ if a Newtonlike method is used).
- In practice the minimization of $L_{c^{k}}\left(x, \lambda^{k}\right)$ is typically inexact (usually exact asymptotically). In some variants of the method, only one Newton step per minimization is used (with safeguards).

DUALITY FRAMEWORK

- Consider the problem

$$
\text { minimize } f(x)+\frac{c}{2}\|h(x)\|^{2}
$$

subject to $\left\|x-x^{*}\right\|<\epsilon, \quad h(x)=0$,
where ϵ is small enough for a local analysis to hold based on the implicit function theorem, and c is large enough for the minimum to exist.

- Consider the dual function and its gradient

$$
\begin{aligned}
q_{c}(\lambda) & =\min _{\left\|x-x^{*}\right\|<\epsilon} L_{c}(x, \lambda)=L_{c}(x(\lambda, c), \lambda) \\
\nabla q_{c}(\lambda) & =\nabla_{\lambda} x(\lambda, c) \nabla_{x} L_{c}(x(\lambda, c), \lambda)+h(x(\lambda, c)) \\
& =h(x(\lambda, c)) .
\end{aligned}
$$

We have $\nabla q_{c}\left(\lambda^{*}\right)=h\left(x^{*}\right)=0$ and $\nabla^{2} q_{c}\left(\lambda^{*}\right)>0$.

- The multiplier method is a steepest ascent iteration for maximizing $q_{c^{k}}$

$$
\lambda^{k+1}=\lambda^{k}+c^{k} \nabla q_{c^{k}}\left(\lambda^{k}\right),
$$

