6.252 NONLINEAR PROGRAMMING

LECTURE 17: AUGMENTED LAGRANGIAN METHODS

• Multiplier Methods

• Consider the equality constrained problem minimize f(x)

subject to h(x) = 0,

where $f : \Re^n \to \Re$ and $h : \Re^n \to \Re^m$ are continuously differentiable.

• The (1st order) multiplier method finds

$$x^{k} = \arg\min_{x \in \Re^{n}} L_{c^{k}}(x, \lambda^{k}) \equiv f(x) + \lambda^{k'} h(x) + \frac{c^{k}}{2} \|h(x)\|^{2}$$

and updates λ^k using

$$\lambda^{k+1} = \lambda^k + c^k h(x^k)$$

CONVEX EXAMPLE

- Problem: $\min_{x_1=1}(1/2)(x_1^2+x_2^2)$ with optimal solution $x^* = (1,0)$ and Lagr. multiplier $\lambda^* = -1$.
- We have

$$\begin{aligned} x^k &= \arg\min_{x\in\Re^n} L_{c^k}(x,\lambda^k) = \left(\frac{c^k - \lambda^k}{c^k + 1}, 0\right) \\ \lambda^{k+1} &= \lambda^k + c^k \left(\frac{c^k - \lambda^k}{c^k + 1} - 1\right) \\ \lambda^{k+1} - \lambda^* &= \frac{\lambda^k - \lambda^*}{c^k + 1} \end{aligned}$$

- We see that:
 - $-\lambda^k \rightarrow \lambda^* = -1$ and $x^k \rightarrow x^* = (1,0)$ for every nondecreasing sequence $\{c^k\}$. It is NOT necessary to increase c^k to ∞ .
 - The convergence rate becomes faster as c^k becomes larger; in fact $\{|\lambda^k - \lambda^*|\}$ converges superlinearly if $c^k \to \infty$.

NONCONVEX EXAMPLE

- Problem: $\min_{x_1=1}(1/2)(-x_1^2+x_2^2)$ with optimal solution $x^* = (1,0)$ and Lagr. multiplier $\lambda^* = 1$.
- We have

$$x^{k} = \arg\min_{x \in \Re^{n}} L_{c^{k}}(x, \lambda^{k}) = \left(\frac{c^{k} - \lambda^{k}}{c^{k} - 1}, 0\right)$$

provided $c^k > 1$ (otherwise the min does not exist)

$$\lambda^{k+1} = \lambda^k + c^k \left(\frac{c^k - \lambda^k}{c^k - 1} - 1\right)$$

$$\lambda^{k+1} - \lambda^* = -\frac{\lambda^k - \lambda^*}{c^k - 1}$$

- We see that:
 - No need to increase c^k to ∞ for convergence; doing so results in faster convergence rate.
 - To obtain convergence, c^k must eventually exceed the threshold 2.

THE PRIMAL FUNCTIONAL

• Let (x^*, λ^*) be a regular local min-Lagr. pair satisfying the 2nd order suff. conditions are satisfied.

The primal functional

$$p(u) = \min_{h(x)=u} f(x),$$

defined for u in an open sphere centered at u = 0, and we have $p(0) = f(x^*), \qquad \nabla p(0) = -\lambda^*,$

 $p(u) = \min_{x_1 - 1 = u} \frac{1}{2}(x_1^2 + x_2^2), \quad p(u) = \min_{x_1 - 1 = u} \frac{1}{2}(-x_1^2 + x_2^2)$

AUGM. LAGRANGIAN MINIMIZATION

• Break down the minimization of $L_c(\cdot, \lambda)$:

$$\min_{x} L_{c}(x,\lambda) = \min_{u} \min_{h(x)=u} \left\{ f(x) + \lambda' h(x) + \frac{c}{2} \|h(x)\|^{2} \right\}$$
$$= \min_{u} \left\{ p(u) + \lambda' u + \frac{c}{2} \|u\|^{2} \right\},$$

where the minimization above is understood to be local in a neighborhood of u = 0.

• Interpretation of this minimization:

• If c is suf. large, $p(u) + \lambda' u + \frac{c}{2} ||u||^2$ is convex in a neighborhood of 0. Also, for $\lambda \approx \lambda^*$ and large c, the value $\min_x L_c(x, \lambda) \approx p(0) = f(x^*)$.

INTERPRETATION OF THE METHOD

• Geometric interpretation of the iteration

 $\lambda^{k+1} = \lambda^k + c^k h(x^k).$

• If λ^k is sufficiently close to λ^* and/or c^k is suf. large, λ^{k+1} will be closer to λ^* than λ^k .

• c^k need not be increased to ∞ in order to obtain convergence; it is sufficient that c^k eventually exceeds some threshold level.

• If p(u) is linear, convergence to λ^* will be achieved in one iteration.

COMPUTATIONAL ASPECTS

- Key issue is how to select $\{c^k\}$.
 - c^k should eventually become larger than the "threshold" of the given problem.
 - c^0 should not be so large as to cause illconditioning at the 1st minimization.
 - c^k should not be increased so fast that too much ill-conditioning is forced upon the unconstrained minimization too early.
 - c^k should not be increased so slowly that the multiplier iteration has poor convergence rate.

• A good practical scheme is to choose a moderate value c^0 , and use $c^{k+1} = \beta c^k$, where β is a scalar with $\beta > 1$ (typically $\beta \in [5, 10]$ if a Newton-like method is used).

• In practice the minimization of $L_{c^k}(x, \lambda^k)$ is typically inexact (usually exact asymptotically). In some variants of the method, only one Newton step per minimization is used (with safeguards).

DUALITY FRAMEWORK

Consider the problem

minimize
$$f(x) + \frac{c}{2} ||h(x)||^2$$

subject to $||x - x^*|| < \epsilon$, $h(x) = 0$,

where ϵ is small enough for a local analysis to hold based on the implicit function theorem, and c is large enough for the minimum to exist.

• Consider the dual function and its gradient

$$q_c(\lambda) = \min_{\|x - x^*\| < \epsilon} L_c(x, \lambda) = L_c(x(\lambda, c), \lambda)$$

$$\nabla q_c(\lambda) = \nabla_\lambda x(\lambda, c) \nabla_x L_c \left(x(\lambda, c), \lambda \right) + h \left(x(\lambda, c) \right)$$
$$= h \left(x(\lambda, c) \right).$$

We have $\nabla q_c(\lambda^*) = h(x^*) = 0$ and $\nabla^2 q_c(\lambda^*) > 0$.

• The multiplier method is a steepest ascent iteration for maximizing q_{c^k}

$$\lambda^{k+1} = \lambda^k + c^k \nabla q_{c^k}(\lambda^k),$$