6.252 NONLINEAR PROGRAMMING

LECTURE 13: INEQUALITY CONSTRAINTS

LECTURE OUTLINE

- Inequality Constrained Problems
- Necessary Conditions
- Sufficiency Conditions
- Linear Constraints

Inequality constrained problem

minimize f(x)subject to h(x) = 0, $g(x) \le 0$

where $f: \Re^n \mapsto \Re$, $h: \Re^n \mapsto \Re^m$, $g: \Re^n \mapsto \Re^r$ are continuously differentiable. Here

$$h = (h_1, ..., h_m), \qquad g = (g_1, ..., g_r).$$

TREATING INEQUALITIES AS EQUATIONS

- Consider the set of active inequality constraints $A(x) = \left\{ j \mid g_j(x) = 0 \right\}.$
- If x^* is a local minimum:
 - The active inequality constraints at x^* can be treated as equations
 - The inactive constraints at x^* don't matter
- Assuming regularity of x^* and assigning zero Lagrange multipliers to inactive constraints,

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(x^*) = 0,$$
$$\mu_j^* = 0, \qquad \forall \ j \notin A(x^*).$$

• Extra property: $\mu_j^* \ge 0$ for all *j*. Intuitive reason: Relax *j*th constraint, $g_j(x) \le u_j$,

$$\mu_j^* = -(\Delta \text{cost due to } u_j)/u_j$$

BASIC RESULTS

Kuhn-Tucker Necessary Conditions: Let x^* be a local minimum and a regular point. Then there exist unique Lagrange mult. vectors $\lambda^* = (\lambda_1^*, \dots, \lambda_m^*)$, $\mu^* = (\mu_1^*, \dots, \mu_r^*)$, such that

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0,$$

 $\mu_j^* \ge 0, \qquad j = 1, \dots, r,$ $\mu_j^* = 0, \qquad \forall \ j \notin A(x^*).$

If f, h, and g are twice cont. differentiable,

 $y' \nabla^2_{xx} L(x^*, \lambda^*, \mu^*) y \ge 0,$ for all $y \in V(x^*),$

where

 $V(x^*) = \{ y \mid \nabla h(x^*)' y = 0, \, \nabla g_j(x^*)' y = 0, \, j \in A(x^*) \}.$

 Similar sufficiency conditions and sensitivity results. They require strict complementarity, i.e.,

$$\mu_j^* > 0, \qquad \forall \ j \in A(x^*).$$

PROOF OF KUHN-TUCKER CONDITIONS

Use equality-constraints result to obtain all the conditions except for $\mu_j^* \ge 0$ for $j \in A(x^*)$. Introduce the penalty functions

$$g_j^+(x) = \max\{0, g_j(x)\}, \qquad j = 1, \dots, r,$$

and for k = 1, 2, ..., let x^k minimize

$$f(x) + \frac{k}{2}||h(x)||^{2} + \frac{k}{2}\sum_{j=1}^{r} \left(g_{j}^{+}(x)\right)^{2} + \frac{1}{2}||x - x^{*}||^{2}$$

over a closed sphere of x such that $f(x^*) \leq f(x)$. Using the same argument as for equality constraints,

$$\lambda_i^* = \lim_{k \to \infty} k h_i(x^k), \qquad i = 1, \dots, m,$$

$$\mu_j^* = \lim_{k \to \infty} kg_j^+(x^k), \qquad j = 1, \dots, r.$$

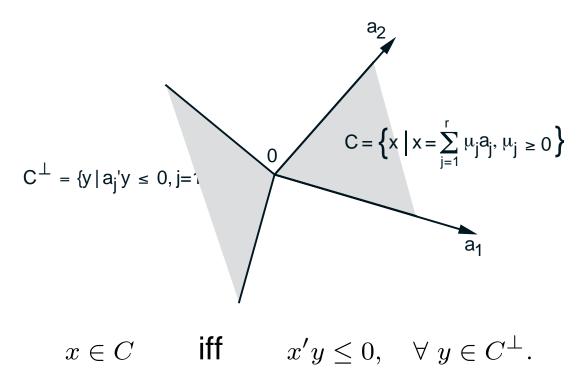
Since $g_j^+(x^k) \ge 0$, we obtain $\mu_j^* \ge 0$ for all j.

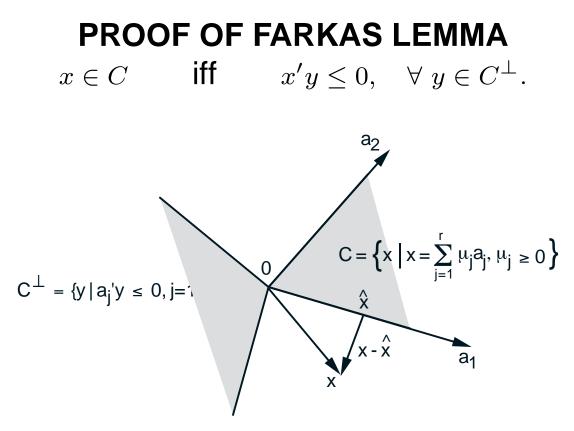
LINEAR CONSTRAINTS

- Consider the problem $\min_{a'_j x \le b_j, j=1,...,r} f(x)$.
- Remarkable property: No need for regularity.
- Proposition: If x^* is a local minimum, there exist μ_1^*, \ldots, μ_r^* with $\mu_j^* \ge 0$, $j = 1, \ldots, r$, such that

$$\nabla f(x^*) + \sum_{j=1}^r \mu_j^* a_j = 0, \qquad \mu_j^* = 0, \quad \forall \ j \notin A(x^*).$$

Proof uses Farkas Lemma: Consider the cones
C and C[⊥]





Proof: First show that *C* is closed (nontrivial). Then, let *x* be such that $x'y \le 0, \forall y \in C^{\perp}$, and consider its projection \hat{x} on *C*. We have

$$x'(x - \hat{x}) = \|x - \hat{x}\|^2, \qquad (*)$$

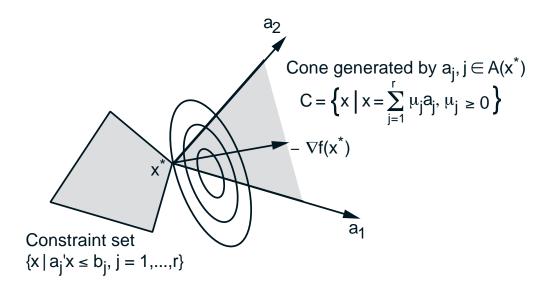
$$(x - \hat{x})'a_j \le 0, \qquad \forall j.$$

Hence, $(x - \hat{x}) \in C^{\perp}$, and using the hypothesis,

$$x'(x - \hat{x}) \le 0. \tag{**}$$

From (*) and (**), we obtain $x = \hat{x}$, so $x \in C$.

PROOF OF LAGRANGE MULTIPLIER RESULT



The local min x^* of the original problem is also a local min for the problem $\min_{a'_j x \leq b_j, j \in A(x^*)} f(x)$. Hence

$$\nabla f(x^*)'(x-x^*) \ge 0, \quad \forall x \text{ with } a'_j x \le b_j, \ j \in A(x^*).$$

Since a constraint $a'_j x \leq b_j$, $j \in A(x^*)$ can also be expressed as $a'_j (x - x^*) \leq 0$, we have

$$\nabla f(x^*)' y \ge 0, \quad \forall y \text{ with } a'_j y \le 0, \ j \in A(x^*).$$

From Farkas' lemma, $-\nabla f(x^*)$ has the form

$$\sum_{j \in A(x^*)} \mu_j^* a_j, \quad \text{for some } \mu_j^* \ge 0, \, j \in A(x^*).$$

Let $\mu_j^* = 0$ for $j \notin A(x^*)$.

CONVEX COST AND LINEAR CONSTRAINTS

Let $f : \Re^n \mapsto \Re$ be convex and cont. differentiable, and let *J* be a subset of the index set $\{1, \ldots, r\}$. Then x^* is a global minimum for the problem

> minimize f(x)subject to $a'_j x \leq b_j$, $j = 1, \dots, r$,

if and only if x^* is feasible and there exist scalars μ_j^* , $j \in J$, such that

$$\mu_j^* \ge 0, \qquad j \in J,$$

$$\mu_j^* = 0, \qquad \forall \ j \in J \text{ with } j \notin A(x^*),$$

$$x^* = \arg \min_{\substack{a'_j x \le b_j \\ j \notin J}} \left\{ f(x) + \sum_{j \in J} \mu_j^* (a'_j x - b_j) \right\}.$$

- Proof is immediate if $J = \{1, \ldots, r\}$.
- Example: Simplex Constraint.