6.253: Convex Analysis and Optimization Midterm

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

State which of the following statements are true and which are false. You don't have to justify your answers:

1. If X_{1}, X_{2} are convex sets that can be separated by a hyperplane, and X_{1} is open, then X_{1} and X_{2} are disjoint. (8 points)
TRUE
2. If $f: \mathbf{R}^{n} \mapsto \mathbf{R}$ is a convex function that is bounded in the sense that for some $\gamma>0,|f(x)| \leq \gamma$ for all $x \in \mathbf{R}^{n}$, then the problem

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in \mathbf{R}^{n},
\end{array}
$$

has a solution. (8 points)
TRUE
3. The support function of the set $\left\{\left(x_{1}, x_{2}\right)\left|\left|x_{1}\right|+\left|x_{2}\right|=1\right\}\right.$ is $\sigma(y)=\max \left\{y_{1}, y_{2}\right\}$. (8 points) FALSE
4. If $f: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ is a convex function such that $\partial f(\bar{x})$ is nonempty for some $\bar{x} \in \mathbf{R}^{n}$, then f is lower semicontinuous at \bar{x}. (8 points)
TRUE
5. If $M=\{(u, w)|u \in \mathbf{R},|u| \leq w\}$, the dual function in the MC/MC framework corresponding to M is $q(\mu)=0$ for all $\mu \in \mathbf{R}$. (8 points)
FALSE
6. Let $f: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ be convex and S be a subspace. If $\bar{x} \in S$ and $\partial f(\bar{x}) \cap S^{\perp} \neq \emptyset$, then \bar{x} minimizes f over S. (8 points)
TRUE

Problem 2

Consider the two-dimensional problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g(x) \leq 0 \\
& x \in X
\end{array}
$$

where

$$
f(x)=e^{-x_{1}}, \quad g(x)=\frac{x_{1}^{2}}{x_{2}}, \quad X=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}>0\right\}
$$

1. Is the function g convex over X ? (10 points)
2. Plot the set $\bar{M}=\{(u, w) \mid \exists x \in X$ such that $g(x) \leq u, f(x) \leq w\}$. (15 points)
3. What is the optimal value f^{*} of the problem? (5 points)
4. What is the optimal value of the dual and the duality gap? (15 points)
5. Consider the perturbed problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g(x) \leq u \\
& x \in X
\end{array}
$$

for $u>0$. Is there a duality gap? (7 points)

Solution.

1. The function g is convex over X . Its Hessian is:
$\nabla^{2} g(x)=\left[\begin{array}{cc}\frac{2}{x_{2}} & \frac{-2 x_{1}}{x_{2}^{2}} \\ \frac{-2 x_{1}}{x_{2}^{2}} & \frac{2 x_{1}^{2}}{x_{2}^{3}}\end{array}\right]=\frac{2}{x_{2}^{3}}\left[\begin{array}{c}x_{2} \\ -x_{1}\end{array}\right]\left[\begin{array}{c}x_{2} \\ -x_{1}\end{array}\right]^{T} \geq 0$. Therefore, according to Proposition 1.1.10, g is convex over X .
2. For $u<0$, there is no $x \in X$ such that $g(x) \leq u$.

For $u=0$, we have $x_{1}=0, f(x)=1$. Therefore, $w \geq 1$.
For $u>0$, we have $\frac{x_{1}^{2}}{x_{2}} \leq u \Leftrightarrow x_{1} \leq \pm \sqrt{u x_{2}}$. Therefore, x_{1} changes from $(0, \infty)$, and $w>0$. Therefore, \bar{M} consists of the positive orphant and the halfline $\{(0, w) \mid w \geq 1\}$.
3. From the description of \bar{M}, we can see that $f^{*}=1$.
4. From the description of \bar{M}, we can see that the dual function is $q(\mu)= \begin{cases}0 & \text { if } \mu \geq 0 \\ -\infty & \text { if } \mu<0\end{cases}$ Therefore, $q^{*}=0$ and there is a duality gap of $f^{*}-q^{*}=1$. Clearly, Slater's condition doesn't hold for this problem.
5. For the perturbed problem, Slater's condition holds, therefore we have no duality gap.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

