MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2012 Spring 6.253 Midterm Exam

Instructor: Prof. Dimitri Bertsekas

Problem 1. (60 points) In the following, X is a nonempty convex subset of \Re^{n}, A is a matrix of appropriate dimension, b is a vector of appropriate dimension, and $f: \Re^{n} \mapsto(-\infty, \infty]$ is a convex proper function. State which of the following statements are true and which are false. You don't have to justify your answers.

1. If the epigraph of f is closed, f is continuous.
2. If the epigraph of f is closed, $\operatorname{dom}(f)$ is closed.
3. The relative interior of X is equal to its interior.
4. The recession cone of X is equal to the recession cone of its relative interior.
5. There exists a hyperplane that separates X and $-X$.
6. Let f be the two-dimensional function $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)^{2}$. Then f is coercive.
7. If f is closed and $\operatorname{dom}(f)$ is compact then its conjugate is real-valued.
8. Suppose that the problem of minimizing f over $x \in X$ and $A x=b$ has finite optimal value and X is open. Then there is no duality gap.
9. Suppose f is the sum of a real-valued function and the indicator function of X. Then at each $x \in X$ there is at least one subgradient of f.
10. Suppose $f(x)=b^{\prime} x$ and x^{*} minimizes f over X. Then the normal cone of X at x^{*} contains $-b$.

Solution.

1. False. The given conditions only ensure that f is lower semicontinuous.
2. False. Consider the function $f: \Re^{+} \mapsto \Re^{+}$defined by $f(x)=1 / x$.
3. False. Consider the interval $[-1,1]$ on an axis of \Re^{2}, which has empty interior but nonempty relative interior $(-1,1)$.
4. False. Consider $X=\left\{x_{1}>0, x_{2} \geq 0\right\} \cup\{(0,0\}$. Then the recession cone of X is X itself, while the recession cone of the relative interior of X is the positive orthant.
5. False. If 0 is an interior point of X, then X and $-X$ cannot be separated.
6. False. Along the line $x_{1}+x_{2}=0$, even if $\sqrt{x_{1}^{2}+x_{2}^{2}} \rightarrow \infty$, we have $f\left(x_{1}, x_{2}\right)=0$.
7. True.
8. True. By the strong duality theorem.
9. True. Subgradients of the real-valued function and the indicator function of X exist at all $x \in X$, and the relative interiors of their domains intersect. Use Prop. 5.4.6.
10. True.

Problem 2. (40 points) Consider the problem

$$
\begin{gathered}
\min x^{2}+y^{2} \\
\text { subject to } a-x-y \leq 0, \quad x, y \in\{0,1\}
\end{gathered}
$$

(a) Sketch the set of constraint-cost pairs:

$$
\left\{\left(a-x-y, x^{2}+y^{2}\right) \mid x, y \in\{0,1\}\right\}
$$

and the perturbation function

$$
p(u)=\min _{a-x-y \leq u, x, y \in\{0,1\}} x^{2}+y^{2}
$$

Is p lower semicontinuous?
(b) Consider the MC/MC framework with M being the epigraph of p. What are the values of a for which the problem is feasible and at the same time there is a duality gap? What are the values of a for which the problem is feasible and there is no duality gap? What are the values of a for which the problem is feasible and has a unique dual solution?
(c) Formulate the max crossing problem for one of the values of a for which the problem is feasible and there is no duality gap, and find the set of primal and dual optimal solutions.
(d) Replace the constraint $a-x-y \leq 0$ with a strict inequality $a-x-y<0$. Answer the questions in parts (a) and (b) again.
Solution. (a) To be added. The perturbation function is

$$
p(u)= \begin{cases}0 & \text { if } u \geq a \\ 1 & \text { if } a>u \geq a-1 \\ 2 & \text { if } a-1>u \geq a-2 \\ \infty & \text { if } a-2>u\end{cases}
$$

We can show that p is lower semicontinuous by verifying the definition.
(b) For the problem to be feasible, we must have $a \leq 2$; and for there is a duality gap, from the MC/MC we see that $a>0, a \neq 1$ and $a \neq 2$. To sum up, we have $a \in(0,1) \cup(1,2)$.

For the problem to be feasible with no duality gap, we must have $a \in(-\infty, 0] \cup\{1,2\}$.
For the problem to be feasible with a unique dual solution, we have $a \in(-\infty, 0) \cup(0,2)$.
(c) Let $a=1$. The optimal solution is $\left(x^{*}, y^{*}\right)=(0,1)$ or $\left(x^{*}, y^{*}\right)=(1,0)$ and the optimal value is $f^{*}=1$. The max crossing problem is

$$
\max _{\mu \geq 0} \inf _{u \in \Re}\left\{p(u)+\mu^{\prime} u\right\}
$$

and the solution is $q^{*}=1$ and $\mu^{*}=1$.
(d) The function p is no longer semi-continuous. For the problem to be feasible with a duality gap, we must have $a \in[0,2)$. For the problem to be feasible with no duality gap, we must have $a \in(-\infty, 0)$. For the problem to be feasible and has a unique dual solution, we have $a \in(-\infty, 0) \cup(0,2)$.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization
 Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

