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PROFESSOR: OK, so I guess we're ready to start. Clearly, you can talk to us about the exams later

if you want to. And we will both be around after class for a bit-- or I'll be around after

class for a bit and regular office hours.

Wanted to finish talking about [INAUDIBLE] state Markov change today and go on to

talk about Markov processes. And the first thing we want to talk about is what does

reversibility mean. I think reversibility is one of these very, very tricky concepts that

you think you understand about five times, and then you realize you don't

understand it about five times. And hopefully by the sixth time, and we will see at

about six times, so hopefully by the end of the term, it will look almost obvious to

you.

And then, we're going to talk about branching processes. I said and what got

passed out to you that I'd be talking about round robin and processor sharing. I

decided not to do that. It was too much complexity for this part of the course. I will

talk about it just for a few minutes. And then we'll go into Markov processes. And we

will see most of the things we saw in Markov change again but in a different context

and in a slightly more complicated context.

So for any Markov chain, we have these equations. Typically, you just state the

equation of the probability of X sub n plus 1 given all the previous terms is equal to

probability of Xn n plus 1 given Xn. It's an easy extension to write it this way. The

probability of lots of things in the future given everything in the past is equal to lots

of things in the future just given the most recent thing in the past.

So what we did last time was to say let's let A plus be any function of all of these

things here, and let's A minus be any function of all of these things here except for X
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sub n, namely X sub n minus 1 down to X0. And then what this says more generally

is the probability of all these future things condition on Xn, and all the past things is

equal to probability of the future given just Xn.

Then, we wrote that by multiplying by the probability of A minus given Xn. And you

can write it in this nice symmetric form here. I'm hoping that these two laser

pointers, one of them will keep working. And as soon as you write it in this

symmetric form, it's clear that you can again turn it around and write in the past

given the present and the future is equal to the past given the present.

So this formula really is the most symmetric form [? for it ?] and it really shows the

symmetry of past future, at least as far as Markov chains are concerned. Yeah?

AUDIENCE: I don't understand [INAUDIBLE] write that down though. I feel like I'm missing a

step. For example, let's say I [INAUDIBLE], I can't infer where I came from?

PROFESSOR: No, that's not what this says. I mean all it says is a probabilistic statement. It says

everything you can say about X sub n plus 1 which was the first way we stated.

Everything you know about X sub n plus 1, you can find out by just looking at X sub

n. And knowing the things before that doesn't help you at all.

When you write it out a Markov chain in terms of a graph, you can see this because

you see transitions going from one state to the next state. And you don't remember

what the past is. The only part of the past you remember is just that last state. It

look you're still puzzled.

So it's not how it's saying we can't tell anything about the past and the future. In

fact, if you don't condition on X sub n, this stuff back here has a great deal to do

with the stuff up here. I mean it's only when you do this conditioning, it is saying that

the conditioning at the present is the only linkage you have between past and

future. If you know where you are now, you don't have to know anything about the

past and know what's going to happen in the future.

That's not the way life is. I mean life is not a Markov chain. It's just the way these

Markov chains are. But this very symmetric statement says that as far as Markov
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chains are concerned, past and future look the same. And that's the idea that we're

trying to use when we get into reversibility. This isn't saying anything about

reversibility, yet this is just giving a general property that Markov chains have.

And when you write this out, it says the probability of this past state given Xn and

everything in the future is equal to the probability of the past state given X sub n. So

this is really the Markov condition running from future down to past.

And it's saying that if you want to evaluate these probabilities of where you were

given anything now and further on, or put it in a more sensible way, if you know

everything over the past year, and from knowing everything over the past year, you

want to decide what can you tell about what happens the year before, what it's

saying is the probability of what happened the year before is statistically a function

only on the last day on the first day of this year that you're conditioning on.

So Markov condition works in both directions. You need to study state and forward

change to be there in order to have homogeneity in a backward chain. In other

words, usually, we define a Markov chain by starting off at time zero and then

evolving from there. So when you go backwards, that fact that you started at time

zero and said something about time zero destroys the symmetry between past and

feature. But if you start off in steady state, then everything is as it should be.

So if you have a positive-recurrent Markov chain in steady state, it can't be in steady

state unless it's positive-recurrent, because otherwise, you can't evaluate the

steady-state probabilities. The steady-state probabilities don't exist. And the

backward probabilities are probability that X sub n minus 1 equals j given that X sub

n equals i is the transition probability from i to j times the steade-state probability pi

sub j over pi sub y.

This looks more sensible if you bring the pi sub i over there, pi sub i times

probability of Xn minus 1 equals j given Xn equals i is really the probability of Xn

equals i and Xn minus 1 equals j. So what this statement is really saying is it's pi i

times the probability of Xn minus one equals j given Xn equals i is really the

probability of being in state j at time n minus 1 and state i at time [? n. ?] And we're
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just writing that in two different ways. It's the base law way of writing things in two

different ways.

If we define this backward probability, which we said you can find by base law if you

want to work at it, if we define this to be the backward transition probability, p sub ij

star, in other words, p sub ij star is in this world where things are moving backwards,

it corresponds to p sub j in the world where things are moving forward.

P sub ij star is then the probability of being in state j at the next time back given that

you're in state i at this time if you're in state I at the present. In other words, if you're

visualizing moving from future time back to backward time, that's what your Markov

chain is doing now. These star transition probabilities are the probabilities of moving

backward by one step, conditional going where you were at time n, where you're

going to be at time n minus 1, if you will.

As I said, these things are much easier to deal with if you view them on a line, and

you have a right moving chain which is what we usually think of as the chain moving

from past to future. And then you have a left moving chain, which is what you view

as moving from future down to past.

OK, we define a chain as reversible if these backward probabilities are equal to the

forward transition probabilities. So if a chain is reversible, it's says that pi I times P

sub ij, this is the probability that you are at a time n minus 1, you were in state I, and

then you move to state j. So it's the probability of being in one state at one time, the

next state at the next time. It's the probability that Xn minus 1 and Xn are ij.

And this probability here is-- this equation is moving forward in time. So this

equation here is the probability that you were in state j, and you move to state i. So

what we're saying is the probability of being in i moving to j is the same as the

probability of being in j and moving to i.

It's the condition you have on any birth-death chain. We said that on any birth-death

chain, the fraction of transitions from i to j has to be equal to the total number of

transitions from j to i. It's not that the probability of moving up given i is the same as
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that of moving back. That's not what it's saying. It's saying that the probability of

having a transition over time is pi i times Pij.

Reversibility says that you make as many up transitions over time as you make

down transitions over the same pair of states. I think that's the simplest way to state

the idea of reversibility. The fraction of time that you move from state i to state j is

the same as the fraction of time in which you move from state j to state i.

It's what always happens on a birth-death chain, because every time you go up, if

you ever get back to the lower part of the chain, you have to move back over that

same path. You can easily visualize other situations where you have the same

condition if you have enough symmetry between the various probabilities involved.

But the simplest way is to have this sort of-- well, not only the simplest, but also the

most common way is to have a birth-death chain.

OK, so this leads us to the statement, all positive-recurrent birth-death chains are

reversible, and that's the theorem. Now the question is what do you do with that?

Let's have a more general example than a birth-death chain. Suppose the non-zero

transition of a positive-recurrent Markov chain form a tree. Before we had the states

going on a line, and from each state to the next state, there were transition

probabilities, you could only go up or down on this line.

What I'm saying now is if you make a tree you have the same sort of condition that

you had before if the transitions on the states look like a tree. So these are the only

transitions that exist in this Markov chain. These are the states here. Again, you

have this condition. The only way to get from this state out to this state is to move

through here so that the number of transitions that go from here to there must be

within one of a number of transitions that go from here back to there.

So you have this reversibility condition again on any tree. And these birth-death

chains are just very, very skinny trees where everything is laid out on a line. But this

is the more general case. And you'll see cases of this as we move along.

The following theorem is one of these things that you use all the time in solving

5



problems. And it's extraordinarily useful. It says for a Markov chain with transition

probabilities P sub ij, if a set of numbers pi sub i exists so that all of them are

positive, they sum to one. If you can find such a set of numbers, and if they satisfy

this equation here, then you know that the chain is reversible, and you know that

those numbers are the steady-state probability. So you get everything at once.

It's sort of like a guessing theorem. And I usually call it a guessing theorem,

because starting out, it's not obvious that these equations have to be satisfied.

They're only satisfied if you have a chain which is reversible. But if you can find a

solution to these equations, then, in fact, you know it's reversible, and you know you

found steady--state probabilities.

It's a whole lot easier to solve this equation usually than to solve the usual equation

we have for steady-state probabilities. But the proof of the theorem-- I just restated

the theorem here, leaving out all of the boiler plate . If we take this equation for fixed

j, and we sum over I, what happens? When you sum over i over on this side, you

get the sum over i of pi sub i P sub ij. When you sum over i on this side, you get pi

sub j, because when you sum P sub ji over i, you have to get one.

When you're in state j, you have to go someplace. And you can only go one place,

each with different probabilities. So that gives you the usual steady-state conditions.

If you can solve those steady state conditions, then you know from what we did

before that the chain is positive-recurrent. You know there are steady-state

probabilities. You know there's probabilities are all greater than zero. So if there's

any solution to these steady-state equations, then you know the chain has to be

positive-recurrent. And you know it has to be reversible in this case.

OK, here are a bunch of sanity checks for reversibility. In other words, if you're

going to guess at something that's reversible and try to solve these equations, you

might as well do a sanity check first.

The simplest and most useful sanity check is if you want it be reversible, and there's

a transition from i to j, then there has to be a transition from j to I also. Mainly the

number of transitions going from i to j has to be the same over the long term to
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number of transitions going from j to I.

If there's a zero transition probability one way and not the other way, you can't

satisfy that equation. If the chain is periodic, the period has to be too. Why is that?

Well, it's a long proof in the notes. And if you write everything down in algebra, it

looks a little long. If you just think about it, it's a lot shorter. If you're going around on

a cycle of, say, link three, if the chain is periodic, and it's periodic with some period

others than two, then you know that the set of states has to partition into a set of

subsets.

And you have to move from one subset, to the next subset, to the next subset, and

so forth. When you go backwards, you're moving around that cycle in the opposite

direction. Now, the only way that moving around a cycle one way and moving

around it the other way works out is when the cycle only has two states [? set in, ?]

because then you're moving, and you're moving right back again.

OK, so the period has to be two if it's periodic. If there's any set of transitions i to j, j

to k, and k to I, namely if you can move around this way with some probability, then

the probability of moving back again has to be the same thing. And that's what this

is saying. This is moving around this cycle of length three one way. This is the

forward probabilities for moving around a cycle, the opposite way and to have

reversibility. The probability of going one way has to be the same as the probability

going the other way.

Now, that sounds peculiar, and it gives me a good excuse to point out one of the

main things that's going on here. When you say something is reversible, it doesn't

usually mean that P sub ij is equal to P sub ji. What it means is that pi sub I times Pij

equals pi j times Pji. Namely, the fraction of transitions here is the same as the

fraction of transitions here.

Why is it that here I'm only using the probabilities, and I'm not saying anything about

the initial probability? It's because both of these cycles start with state i. So what you

really want to do is say pi I times Pij times Pjk times Pki is the same as pi i times

[INAUDIBLE] And then you cancel out the pi. So when you have a cycle, you don't
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need that initial steady-state probability in there.

There's a nice generalization of the guessing theorem to non-reversible change and

that generalization and it's proved the same way that this is proved. If you can find a

set of transition probabilities, P sub ij star, and to be a set of transition probabilities,

they have to be non-negative. When you sum this over j, you have to get one.

That's what you need to have a set of transition probabilities. Then, all you need is

pi sub i times P sub ij is equal to pi j times P sub ji star.

In other words, when you look at this backward transition probability for an arbitrary

Markov chain which is positive-recurrent, this has to equal this. This is one of the

conditions that you have on a Markov chain. The interesting thing here is this is

enough. If you can guess a set of backward transition probabilities to satisfy this

equation for all i and j, then you know you must have a set of steady-state

probabilities where the steady-state probabilities are [INAUDIBLE].

And the way to prove this is the same as before. Namely, you sum this over j. And

when you sum this over j, you get the backward transition probability. So I'm not

going to prove it. I mean the proof is in the notes, and it's really the same proof as

we went through before.

And incidentally, if you read the section on round robin, you will find the key to

finding out what's going on there is, in fact, that theorem. It's that way of solving for

what the steady-state probabilities have to be. While I'm at it, let me pause for just a

second, because we're not going to go through that section on round robin. Let me

talk about what it is, what processor sharing is, and why that result is pretty

important.

If you're at all interested in-- well, let's see. First pack of communication is

something important. Second, computer systems of all types is important. There

was an enormous transition probably 20 years ago from computer systems solving

one job at a time, and then it went to the system of solving many jobs concurrently.

It would work a little bit on one job, a little bit in another, a little bit in another, and so

forth. And it turns out to be a very good idea for doing that.
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Or if you're interested in killing systems, what happens if you have a killing system--

suppose it's a GG1 queue. So you have a different service time for each customer.

Or let's make it an MG1 queue. Makes the argument cleaner. Different customers

have different service times. We've seen that in an MG1 queue, everybody can be

held up by one slow customer. And if the customers have an enormously, widely

varied service time, some of them have required enormously long service time, that

causes an enormous amount of queuing.

What happens if you use processor sharing, you have one server. And it's

simultaneously allocating service to every customer which is in queue. So it takes a

service capability, and it splits it up end-wise. And when you talk about processor

sharing, you assume that there's no overhead for doing the splitting. And if there's

no overhead for doing the splitting, you can see intuitively what happens.

The customers that don't need much service are going to be held up a little bit by

these customers who require enormous amounts of service, but not too much.

Because this customer that requires enormous service is getting the same rate of

service as you are. If that customer requires 100 hours of service, and you only

require one second of service, you're going to get out very much faster than they

do.

What happens when you analyze all of this? It turns out that you've turned the MG1

queue into an MM1 queue. In other words, if you're doing processor sharing, it

takes the same expected amount of time for you to get out as it would if all of the

service times were exponential. Now, that is why people went to time sharing a long

time ago.

Most of the arguments for it, especially in the computer science fraternity, were all

sorts of other things. But there's this very simple queuing argument that led to that.

Unfortunately, it's a fairly complicated queuing argument, which is why we're not

going through it. But it's a very important argument.

Why, at the same time, did we go to packet communication? Well, there are all sorts
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of reasons for going to packet communication instead of sending messages, long

messages, one at a time. But one of them, and one of them is very important, is the

same process of sharing resell. If you split things up into small pieces, then what it

means is effectively things are being served in a process of sharing matter.

So again, you get this losing the slow truck effect. And everybody gets through

effectively in a fair amount of time. OK. I probably said just the wrong amount about

that, so you can't understand what I was saying. But I think if you read it, you will get

the idea of what's going on.

OK. Let's look at an MM1 queue now. An MM1 queue, you remember, is a queue

where you have customers coming in. In a [? Poisson ?] manner, the interval

between customers is exponential. That you couldn't model for a lot of things. The

service time is exponential. And what we're going to do to try to analyze this in

terms of mark of change, is to say well, let's look at sampling the state of the MM1

queue at some very finely spaced interval of time.

And we'll make the interval of time, delta, so small that there's a negligible

probability of having two customers come in in the same interval. And so there's a

negligible probability of having a customer come in and a customer go out in the

same interval. It's effectively the same argument that we use to say that a Poisson

process is effectively the same as a Bernoulli process, if you make the time interval

the step size for the Bernoulli process very, very small, and the probability of

success very, very small. As you make that time interval smaller and smaller, it goes

in to a Poisson process as we showed a long time ago.

This is the same argument here. And what we get then is this system, which now

has a state. And the state is the number of customers that are in the system. As one

customer is being served, rest of the customers are sitting in a queue. The

transitions over some very small time, delta, there's a probability lambda delta that a

new customer comes in. So there's a transition to the right.

There's a probability mu delta, if there's a server being served, that that service gets

finished in this time delta. And if you're in state zero, then of course, you can get a
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new arrival coming in, but you can't get any service being done. So it's saying, as

you're all familiar with, you have this system where any time there are customers in

the system, they're getting served at rate mu.

Mu has to be bigger than lambda to make this thing stable. And you can see that

intuitively, I think. And when you're in state zero, then the server isn't doing

anything. So the server is resting, because the server is faster than the arrival

process. And then the only thing that can happen is a new arrival comes in, and

then the server starts to work again, and you're back in state 1.

So this is just a time sampled version of the MM1 queue. And if you analyze this

either from the guessing theorem that I just was talking about or the general result

for birth death change that we talked about last time. You see that pi sub n minus 1

times lambda delta is equal to pi sub n times mu delta. The fraction of transitions

going up is equal to the fraction of transitions going down.

You take the steady state probability of being in state n minus 1. You multiply it by

the probability of an up transition. And you get the same thing, as you take the

probability of being in state by n and multiply it by a down transition. If you define

rho as being lambda over mu, then what this equation says is a steady state

probability of being in state n is rho times the steady state probability of being in a

state n minus 1.

This is the same as the general birth death result, except that rho is a constant

overall state rather than state 1. Pi sub n is then equal to a rho sub n times pi zero.

And pi sub n is then equal to, if you re-curse on this, you get this. Then you use the

condition that the pi sub i's have to add up to 1. And you get pi sub n has to be

equal to 1 minus rho times rho to the n.

OK. This is all very simple and straightforward. What's curious about this is it doesn't

depend on delta at all. You can make delta anything you want to. And we know that

if we shrink delta enough, it's going to look very much like an MM1 queue. But it

looks like an MM1 queue no matter what delta is. Just so long as lambda plus mu

times delta is less than or equal to 1.
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You don't want transition probabilities to add up to more than 1. And you have these

self loops here which take up the slack. And we saw before that the steady state

probabilities didn't have anything to do with these self transitions. And that will turn

out to be sort of useful later on.

So we get these nice probabilities which are independent of the time increment that

we're taking. So we think that this is probably pretty much operating like an actual

MM1 queue would operate. OK. Now here's this diagram that I showed you last

time, and I told you was going to be confusing. And I hope it's a little less confusing

at this point.

We've now talked about reversibility. We know what reversibility means. We know

that we have reversibility here. And what's going on? We have this diagram on the

top, which is the usual diagram for the way that an MM1 queue operates. You start

out in state zero. The only thing that can happen from state zero is at some point

you get an arrival.

So the arrival takes you up there. You have no more arrivals for a while. Some later

time, you get another arrival. [INAUDIBLE] So this is just the arrival process here.

This is the number of arrivals up until time T. The same time, when you have

arrivals, eventually since the server is working now, at some point there can be a

departure. So we go over to here in the sample sequence. There's eventually a

departure there. There's a departure there.

And then you're back in state zero again. You go along until there's another arrival.

Corresponding to this sample path of arrivals and departures, we can say what the

state is. The state is just the difference between the arrivals and the departures for

this sample path. So the state here start out at time 1. x1 is equal to 0. Then at time

x2, suddenly an arrival comes in. x2 is equal to 1, x3 is equal to 1, x4 is equal to 1,

x5 is equal to 1.

Another arrival comes in. So we have a queue of 1. We have the server operating

on one customer. Then in the sample path, we suppose there's a departure. And
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we suppose that the second arrival required hardly any service. So there's a very

fast departure there.

Now, what we're going to do is to look at what happens. This is the picture that we

have for the Markov chain. This with the picture we had for the sample path of

arrivals and departures for what we thought was the real life thing that was going

on. We now have the state diagram. And now what we're going to do is say, let's

look at this backwards.

And since looking at it backwards in time is complicated, let's look at it coming in this

way. So we have the state diagram, and we try to figure out what, going backwards,

is going on here from these state transitions. Well in going backwards, the state is

increasing by 1. So that looks like something that we would call an arrival.

Now why am I calling these arrivals and departures? It's because the probability of

any sample path along here is going to be the same as a backward sample path,

the same sample path, going backwards. That's what we've already established.

And the probabilities going backwards are going to be the same as the probabilities

going forward.

Since we can interpret this going forward as arrivals causing up transitions,

departures causing down transitions, going backwards we can say this is an arrival

in this backward going chain. This is an arrival in a backward going chain. This is a

departure in the backward going chain. We go along here. Finally, there's another

departure in the backward going chain.

This state diagram-- with two of them, we might make it. Yes, OK. The state

diagram here determines this diagram here. If I tell you what this is, you can draw

this. You can draw every up transition as an arrival, every down transition as a

departure. So this diagram is specified by this diagram. This diagram is also

specified by this diagram. So this and this each specify each other.

Now if we interpret this as arrivals and this is departures, and we have the

probabilities of an MM1 chain, then we say the statistics of these arrivals here are
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the same as a Bernoulli process, which is coming along the other way and leading

to arrivals. What that says is the departure process here is a Bernoulli process.

Now you really have to wrap your head around that a little bit. Because we know

that departures only occur when you're in states greater than or equal to 1. So

what's going on? When you're looking at it in forward time, a departure can only

occur from a non-negative state to some other state. Namely from some non-

negative state to some smaller state.

Now, when I look at it backwards in time, what do I find? I can be in state zero. And

there could have been a departure which may-- if I'm in state zero at time zero, and

I say there was a departure between n minus 1 and n, that just says that the state at

time n minus 1 was equal to 1. Not that the state at time n was equal to 1.

Because I'm running along here looking at these arrivals going this way, departures

going this way. When I'm in state zero, I can get an arrival. I can't when I'm in state

1. If I were here, I couldn't get a departure in the next unit of time. Because the

state is equal to zero. But I can be coming from a departure in the previous state.

Because in the previous state, the state was 1.

I mean, you really have to say this to yourself a dozen times. And you have to

reason about it. You have to look at the diagram, read the notes, talk to your friends

about it. And after you do all of this, it will start to make sense to you. But I hope I'm

at least making it seem plausible to you.

So each sample path corresponds to both a right and left moving chain. And each of

them are MM1. So we have Burke's theorem. And Burke's theorem says given an

MM1 sample time Markov chain in steady state, first, the departure processes

Bernoulli at rate lambda. OK.

Let me put it another way now. When we look at it in the customary way, we're

looking at things moving upward in time. We know there can't be a departure when

you're in state zero. That's because we're looking at departures after you're in time

zero. When we look at time coming in backwards, we're not being dependent on the
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state to the left of that departure.

We're only dependent on the state after the departure. The state after departure

can be anything. OK? And therefore, after departure you can be in any state at all.

And therefore, you can always have a departure, which leaves you in state zero.

That's exactly what this theorem is saying. It's saying-- yes.

AUDIENCE: [INAUDIBLE] departure process?

PROFESSOR: Well, a couple of reasons. If you had a Bernoulli process and departure rate was

mu, over a long period of time, you'll have more departures than you have arrivals.

But the other, better reason is that now you're amortizing those departures over all

time. And before, you were amortizing them only over times when the state of the

chain was greater than what?

The probability of the state of the chain is greater than 1 is rho. And that's the

difference between lambda and mu. OK? It's not nice, but that's the way it is. Well

actually, it is nice when you're solving problems with these things. I mean some of

you might have noticed when you were looking at the quiz problem dealing with

Poisson processes, that it was very, very sticky to say things about what happens at

some time in the past, given what's going on in the future.

Those are nasty problems to deal with. This makes those problems very easy to

deal with. Because it's saying, if you go backward in time, you reverse the role of

departures and arrivals. Yes.

AUDIENCE: Can you explain that one more time, why it's lambda and not mu? Just the last thing

you said [INAUDIBLE].

PROFESSOR: OK. Last thing I said was that the probability that the state is bigger than zero is rho.

Because the probability of the state is zero is 1 minus rho. I mean that's not

obvious, but it's just the way it is. So that if you're trying to find the probability of a

departure and you don't know what the state is, and you just look in at any old time,

it's sort of like a random incidence problem.
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I mean, you're looking into this process, and all you know is you're in steady state.

And you don't know what the state is. I mean you can talk about the earlier state.

You can't talk about-- I mean usually when we talk about these Markov chains,

we're talking about state of time n, transition from time n to n plus 1. And in that

case, you can't have a departure if you're in state zero at time n.

Now the transition from time n to n plus 1, if we're moving the other way in time,

we're starting out at time n plus 1. And we're starting out at time n plus 1. If you're in

state zero there, you can still be coming out of a departure from time n. I mean

suppose at time n the state is 1, and at time n plus 1 the state is zero. That means

there was a departure between n and n plus 1.

But when you're looking at it from the right, what you see is the state at time n plus

1 is zero. And there's a probability of a departure. And it's exactly the same as the

probability of a departure given any other state. OK? If you're just doing this as

mathematicians, you could look at these formulas and say yes, I agree with that. It's

all very simple.

Since we're struggling here to get some insight as to what's going on and some

understanding of it, it's very tricky. Now, the other part of Burke's theorem says the

state at n delta is independent of departures prior to n delta. And that seems even

worse. It says you're looking at this Markov chain at a particular time. And you're

saying the state of it is independent of all those departures which happened before

that.

That's really saying something. But if you use this reversibility condition that says,

when you look at things going from right to left, arrivals become departures and

departures become arrivals. Then that statement there is exactly the same as

saying the state of a forward going chain at time n is independent of the arrivals that

come after time n.

Now, you all know that to be true. Because you're all used to looking at these things

moving forward in time. So whenever you see a statement like that, just in your

head reverse time, or turn your head around so that right becomes left and left
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becomes right. And then departures become arrivals and arrivals become

departures. You can't do one without the other. You've got to do both of them

together.

OK. So everything we know about the MM1 sample time chain has a corresponding

statement with time reversed and arrivals and departure switched. So it's not only

Burke's theorem. I mean, you can write down 100 theorems now. And they're all the

same idea.

But the critical idea is the question that two of you asked. And that is, why is the

departure rate going to be lambda when you look at things coming in backwards.?

And the answer again is that it's lambda because we're not conditioning it on

knowing what the prior state was. And everything else you know about these things,

you always condition things on the prior state. So now we're getting used to

conditioning them on the later state.

OK. Let's talk about branching processes. Branching processes have nothing to do

with reversibility. Again, these are just very curious kinds of processes. They have a

lot to do with all kinds of genetic kinds of things, with lots of physics kinds of

experiments.

I don't think a branching process corresponds very closely to any one of those

things. This is the same kind of modeling issue that we come up against all the time.

What we do is, we pick very, very simple models to try to understand one aspect of

a physical problem. And if you try to ask for a model that understands all aspects of

that physical problem, you've got a model that's too complicated to say anything

about.

But here's a model that says if you believe that one generation to the next, if the

only thing that's happening is the individuals in one generation are spawning

children or are spawning whatever it is in that next generation, and every individual

does this in an independent way, then this is what you have to live with.

I mean that's what the mathematics says. The model is no good, but the
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mathematics is fine. So the mathematics is we suppose that x of n is the state of the

Markov chain at time n, and the Markov chain is described in the following way. x of

n, we think of as being the number of elements in generation n, and for each

element k, out of that x of n, each element gives rise to a number of new elements.

And the number of new elements it gives rise to we call it y sub kn. The n at the end

is for the generation, the k is for the particular element in the case generation. So y

sub kn is the number of offspring of the element k in the n-th generation.

After the element in the n-th generation gives birth, it dies. So it's kind of a cruel

world, but that's this particular kind of model. So the number of elements in the n

plus first generation then, is the sum of the number of offspring of the elements in

the n-th generation. So it says x of n plus 1 is equal to this y sub kn is the number of

offspring of element k, and we sum that number of offspring from 1 to x of n, and

that's the equation we get.

The assumption we make is that the non-negative integer random variable y sub

kn-- these random variables-- are independent, and identically distributed over both

n and k. There's this usual peculiar problem that we have where we're defining

random variables that might not exist, but we should be used to that by now.

I mean we just have the random variable there and we pick them out when we need

them is the best way to think about that. The initial generation x of 0 can be an

arbitrary positive random variable, but it's usually taken to be y.

So you start out with one element, and this thing goes on from one generation to

the next. It might all die out, or it might continue, it might blow up explosively, and

we want to find out which it does. OK so here's the critical equation. Let's look at a

couple of examples of why sub kn is deterministic, and equals 1, and xn is equal to

xn minus 1 is equal to x0 for all n greater than or equal to 1. So this example isn't

very interesting.

If y kn is equal to 2, then each generation has twice as many elements as the

previous generation. Each element has two offspring. So you have something that
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looks like a tree, which is where the name branching process comes from because

people think of these things in terms of trees.

Each one element here two offspring, two elements here, and now if you visualize

this kind of chain, you can think of this as being random. So the perhaps in this first

generation there are two offspring. Perhaps this one has no offspring the next time,

so this dies out. This one has two offspring.

This one has two offspring. this one has no offspring, this one has two. Four, we're

up to four. And then all of them die out. So we're talking about that kind of process,

which you can visualize as a tree just as easily as you can visualize it this way.

Personally I find it easier to do this as a tree. Because that's personal preference.

OK, so just talked about this third kind of animal here. If the probability of no

offspring is 1/2, and the probability of twins is 1/2, then xn, it's a rather peculiar

Markov chain. It can grow explosively, or it can die out.

Who would guess that it's going to grow explosively on the average? And who would

guess that it will die out on the average? I mean would anybody hazard to make a

guess that this will die out with probability one?

Well it will, and we'll see that today. It can grow for quite a while, but eventually it

gets killed. When we look at this process now, the state 0 is trapping state. The

states 0 was always a trapping state for branching processes. Because once you

get to state 0, there's nothing to have offspring anymore.

So state 0 is always a trapping state. But in other states you can have rather

explosive growth. For this particular thing here the even numbered states all

communicate, but there are transient. Each odd numbered state doesn't

communicate with any other state. As you see from this diagram here, you're

always dealing with an even number of states here.

Because each offspring each element has either two or 0 offspring. So you're

summing up a bunch of even numbers, and you never get anything odd, except this

initial state of one, which you get out of right away.
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OK so how do we analyze these things? We want to find the probability for the

general case that the process dies out. So let's simplify our notation a little bit. We're

going to let the pmf on y-- we have a pmf on y because y is an integer random

variable. It's 0, or one, or 2, or so forth.

We'll call that p sub of k. For the Markov chain namely x0, x1, x2, and so forth,

we're going to let piece of ij as usual, be the transition probabilities in the Markov

chain. And here it's very useful to talk about the probability the state j has reached

on or before step n, starting from state i.

Remember we talked about that-- I forget whether we talked about last time, or the

time before-- but you can look it up, and what it is. The thing we derive for it is the

probability that you will have touched state j in one of the n previous tries starting in

state i. It's p sub of ij.

That's the probability you reach it right away so you're successful. And then for

everything else you might reach on the first try, there's the probability of going to

that state, initially. So this is what happens in the first trial. And then there's the

probability you will have gone from state k to state j, in any one of the n minus 1

states after that.

So f ij of one is p ij. And now what we're interested in is we start with one element,

and we're interested in the probability that it dies out, before it explodes. Or just the

probability it dies out. So f sub 1,0 of n is the probability starting in state 1 that

you're going to reach state 0 after n steps.

So it's p 0 plus sum here of p sub k probability you go immediately to state k, and

now here's the only hard thing about this. What I claim now is if we go to state k,

and state k we have k elements in this first generation. Now what's the probability

that starting with k elements we're going to be dead after n minus 1 transitions?

Well to be dead after n minus 1 transitions every one of these elements has to die

out.

And they're independent. Everything that's going on from each element is
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independent of everything from each other element. So the probability that this first

one dies out is f sub 1 0 over n minus 1 steps. Probability the second one dies out--

same thing. you take the product of them.

So this is the probability that we die out initially, this sum from k equals 1 to infinity.

Is the probability that each of the k descendants dies out within time n minus 1. We

can take a p 0 into the sum here, we sum from 0 up to infinity, because s sub 1 0 to

the 0 is just equal to 1. So we get this nice looking formula here.

Let me do this quickly, and then we'll go back and talk about it. Let's talk about the z

transform of this birth process. OK so we have this discrete random variable y with

pmf p sub k h of z is the sum over k if p sub k times z to the k.

It's just another kind of transform, we have all kinds of transforms in this course.

And this is one transform. Given the state of a pmf, you can define a function into z

in this way.

So f 1 0 of n is then equal to h of f 1 0 of n minus 1. It's amazing that all this mess

turns into something that looks so simple. So this will be the probability that we will

die out by time end, if in fact we know what the probability of dying out at time n

minus 1 is.

So let's try to solve this equation. And it's not hard to solve as you would think.

There's this z transform h of z, h of z is given there. What do I know about h of z?

I know its value, it's z equal to 1. Because it's z equal to 1, I'm just summing p sub k

times 1. So h of 1 is equal to 1. That's what this is in both cases here. What else do

I know about it?

h of 0 is equal to p 0. And if you take the second derivative of this, you find out

immediately that the second derivative is positive. So this curve, this convex, it goes

like that. As it's been drawn here. The other thing we know is that this derivative at 1

the derivative of h of z is equal to the sum of k times p to the k, times k, times z to

the k minus 1.
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I set z equal to 1, and what is that? It's the sum of pk times k. So this derivative here

is y-bar. In this case, I'm looking at a case where y-bar is equal to 1, in this case, I'm

looking at a case where y-bar is bigger than 1.

Everybody with me so far?

AUDIENCE: So what is the y-bar?

PROFESSOR: y-bar is the expected value of the random variable y. And the random variable y is

the number of offspring than any one element will have. The whole thing is defined

in terms of this y. I mean it's the only thing that I've given you except all these

independence conditions.

It's like the Poisson process. There's only one element in it, which is lambda. A

complicated process, but it's defined in terms of everything being independent of

everything else. And that's the same thing kind of thing we have here.

Well what I've drawn here is a is a graphical way of finding what f 1 0 of 1, f 1 0 of 2,

f 1 0 of 3 is and so forth. And we start out with one element here, and I want to find

h of f 1 0 of one is h of f 1 0 of 0.

What is f 1 0 of 0? It has to be 1. So f 1 0 of n is just equal to h of p 0. So I trace

from here, from p 0 over to this slope of one. So this is p 0 down here, and this point

here is f 1 0 of 1, at this point.

Starting here I go over to here, and down here this is f 1 0 of one, as advertised. I

can move up to the curve and I get h of 2. h of f 1 0 h of z, where z is equal to f 1 0

of 1. And so forth along here. I'm not going to spend a lot of time explaining the

graphical procedure, because this is something that you look at on your own, and

you sort it out in two minutes, and if I explained it, I mean you'll be looking at it at a

different speed and I'm explaining it at, so it won't work.

But what happens is starting out with sum p 0, you just move along each of these

points are f 1 0 of 1, f 1 0 of 2, f 1 0 of 3, up to f 1 0 of infinity. This is the probability

that the process will die out eventually.
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So it's the point at which h of z equals z. That's the root of the equation, h of z

equals z. We already know what that is pretty much, because we know that we're

looking at it case here where y-bar is greater than 1.

So it means the slope here is bigger than 1. We have a convex curve which starts

on this side of this line, that ends on the other side of this line. There's got to be a

root in the middle. And there can only be one root, so we eventually get to that

point. And that's the probability of dying out.

Now, over in this case, y-bar is equal to 1. Or I could look at a case y-bar is less

than 1, And what happens then? Keep moving around the same way, I got up at

that point, and in fact h 1 0 of infinity is equal to 1. Which says the probability of

dying out is equal to 1.

These things that I'm calculating here are in fact the probability of dying out by time

1, the probability of dying out by time 2, and so forth all the way up. In here we start

out on this side of the curve. We keep getting crunched in.

We wind up at that point, and in this case, we keep getting crunched up, and we

wind up at that point. So the general behavior of these branching processes is so

long as there's a possibility of an element having no children, there's a possibility

that the whole process will die out.

But if the expected number of offspring is greater than 1, then that probability of

dying out is less than 1. Unless the expected number of offspring is less than or

equal to 1, then the probability of dying out is in fact equal to 1.

So that was just this graphical picture, and that does the whole thing, and if you

think about it for 10 minutes in a quiet room, I think it will be obvious to you,

because there's no rocket science here. It's just a simple graphical argument. I have

to think about it every time I do it, because it always looks implausible.

So it says the process can explode if the expected number of elements from each

element is larger than 1. But it doesn't have to explode. There's an interesting
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theorem that we'll talk about when we start talking about martingales. And that is

that the number of elements in generation n divided by the expected value of y to

the n-th power x sub n divided by y-bar to the n-th power.

This is something that looks like it ought to be kind of stable. And it says that this

approach is a random variable. Namely with probability 1, this has some random

value that you can calculate. With a certain probability, this is equal to 0. With a

certain probability this is some larger constant. And it can be any old constant at all

with different probabilities.

And you can sort of see why this is happening. Suppose you have this process.

Suppose y-bar is bigger than 1. Suppose it's equal to 2 for example. So the

expected number of offspring of each of these elements is two, so the number of

offspring of 10 to the 6 elements is 2 times 10 to the sixth.

What this is doing is dividing by that multiplying factor. What's going to happen then

is after a certain amount of time, you have so many elements, and each one of

them is doing something independently, so the number of offspring in each

generation divided by an extra y sub bar is almost constant. And that's what this

theorem is saying.

So that after a while it says the growth rate becomes fixed. And that sort of obvious

intuitively.

That's enough for that. Should've not been so talkative about the earlier things. But

Markov processes turn out to be pretty simple, given what we know about Markov

chains. There's not a lot of new things to be learned here. Just a few. Accountable

state Markov process is most easily viewed as a simple extension of accountable

state Markov chain.

And along with each state in the Markov chain, there's a holding time. So what

happens in this process is it goes along. At a certain point there's a state change.

The state change is according to the Markov chain, and amount of time that it takes

is an exponential random variable which depends on the state you are in.
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So in some states you move quickly. In some states you move slowly. But the only

thing that's going on is you have a Markov chain, and each state of the Markov

chain, there's some rate which determines how long it's going to take to get to the

next state change.

So that you can visualize what the process looks like-- This is the state at times 0.

This determines some holding time u1. It also determines some state at time 1. The

state you go to is independent of how long it takes you to get there. This then

determines the rate, so it tells you the rate of this exponential random variable.

And we have this plus some process leading off plus we have this Markov process

leading along here, and for each state of the Markov process, you have this holding

time. You will ask-- as I do every time I look at this-- why did I make this u1 instead

of u0? It's because of the next slide. OK? Here's the next slide, which shows what's

going on.

So we start off at time 0, x of 0 is in some state i. We stay in state i until some time

u1, at which the state changes. The state change now is some state j. We stay in

that same state j until the next state change. We stay in that state until the next

state change, and it is since we want to make the first state change time s of one,

we sort of have to make the first interval between 0 on the state u1.

So these things are off base from the u's. And this is the way that a way that a

Markov process evolves. You simply have what looks like a Poisson process, a

variable rate, and the variable rate is varying according to the state of a Markov

chain every time you have an arrival in the variable rate Poisson process, you

change the rate according to this Markov process.

So it's everything about Markov chains, plus Poisson processes all put together. OK,

I think I'll stop there, and we will continue next time.
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