
Introduction to Numerical Simulation (Fall 2003) 
Problem Set #4  Solutions 

1 Problem 4.1 

a) Both sgcr.m and tgcr.m are identical under exact arithmetic, but they are different under 
finite precision arithmetic, like the one based on floating point representation. sgcr.m uses 
the classical GramSchmidt (CGS) which is numerically unstable, and tgcr.m is based on 
the modified GramSchmidt (MGS) which is more stable. 

TConsider the following example where we want to orthogonalize a vector v = [1+�, 1−�]
with respect to two orthonormal vectors 

1 
q1 = √

2
[1, 1]T , 

1 
q2 = [1, − 1]T .√

2

For both CGS and MGS, the first step is the same: 

1 
β = v T q1 = √

2
{(1 + �) + (1 − �)} = 

√
2, 

where there is not much cancellation error. Hence the updated v, is 

v� = v − βq1 = [��, − ��]T , 

where �� = � + (rounding errors) is used since (1 + �)− 1 generates some cancellation errors. 
Now, the CGS and MGS differs in the next step. For MGS, 

β = (v�)T q2 = 
√

2��, 

v�� = v� − βq2 = 0, 

The projection step does not introduce much numerical error, since the operands, ��’s, are 
in the same order. But, for CGS, 

1 
β = v T q2 = √

2
{(1 + ��)− (1 − ��)} = 

√
2���, 

(1) 
v�� = v� − βq2 = [�� − ���, − �� + ���], 

where ��� = �� + (rounding errors) models the rounding error introduced in evaluating β, 
because 1 and � are very different in magnitude. 

b) If the matrix is symmetric, the back orthogonalization process, which are CGS for 
sgcr.m and MGS for tgcr.m, is effectively one step. That is, you have to normalize the kth 
search direction to only (k − 1)th search direction. MGS and CGS behave exactly the same 
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for the first orthogonalization step, hence, it is hard for you to see any difference. 

c) Your matrix has to satisfy some criteria: 

1. It should not be symmetric. 

2. It should be large enough so that the error can accumulate. 

3. The columns should be nearly linearly dependent as much as possible, but not exactly 
dependent. 

One easy example that one can come up with is a large enough random matrix, say 
70by70. You can generate one easily by typing A=rand(70). But when you do this, you 
have to check the cause of a break down because A can be indefinite and alpha becomes 0. 
Think about how you can do this. 

A better one is the Vandermonde matrix, which arises when you want to do polynomial 
fitting in a naive manner. (Thank you Carlos for letting me know about this. =) ) Type 
A=vander([0:0.1:0.9]) for a 10by10 Vandermonde matrix, and this will make the sgcr.m 
break down. 

2 Problem 4.2 

a) We can use just the following simple function which is zero on outlying eigenvalues: 

1 
p3(x) = 

4000
(x − 1)(x − 20)(x − 200) 

We can easily see that on all of the eigenvalues this polynomial is less than one, therefore 
we are done. 

b) For k ≥ 3, 

k

||r0|| ≤ max pk(λi)
||r || 

i 
| | 

= max p2(λi)pk−2(λi)
i 
| | 

≤ max p2(λi) max pk−2(λi)
i 
| | · 

i 
| | 

Then, we do the following for each polynomial: 

1. Since we know that one eigenvalue is at 20 and another at 200, we make p2(λi) to 
become zero at these points. To ensure the condition pk (0) = 1, p2(x) should be 

1 
p2(x) = 

4000
(x − 20)(x − 200). 

This polynomial is always less than unity for x ∈ [.5, 3]. 
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The Bound and the Actual GCR Residuals

2. Because p2(x) is zero at x = 10 and 100, the largest value of pk−2(x) should be | |
minimized over [.5, 3],


max pk−2(λi) = max pk−2(x) .

i 
| | 

x∈[0.5,3] 
| |

Then, the optimal polynomial that does this is the Chebyshev polynomial, which gives 
the bound 

max 
x∈[0.5,3] 

|pk−2(x)| = 2(
√

6− 1 √
6 + 1

)k−2 . (2) 

Hence, the overall bound when k ≥ 3 is 

||rk||
||r0|| ≤ 2(

√
6− 1 √
6 + 1

)k−2 . (3) 

For k ≤ 2, we have to find them separately: 

||r0||
||r0|| 
||r1|| 
||r0|| 
||r2||
||r0|| 

= 

= 

= 

1 

| 1 
200 

(1 − 200)| = 0.99 

| 1 
4000 

(1 − 20)(1 − 200)| = 0.97 

(4) 

c) For 10 test cases, the residual of the tgcr.m is shown in Figs. 1. 

Figure 1: Plot of the residual for tgcr.m with the bound in b). 
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3 Problem 4.3 

a) Suppose p(x, y) has a constant term c such that 

p(x, y) = p�(x, y) + c where p�(0, 0) = 0. (5) 

Then, the differential equation and the boundary conditions for the pure Neumann problem 
can be written as 

∂2p(x, y) ∂2p(x, y)
= 

∂2p�(x, y)
+ 

∂2p�(x, y)
= b(x, y),+ 

∂x2 ∂y2 ∂x2 ∂y2 

∂p(x, y)
= 

∂p�(x, y) 
= 0,

∂x ∂x 
∂p(x, y)

= 
∂p�(x, y) 

= 0,
∂y ∂y 

and none of them specifies the value of c. This means that any value of c can be used for the 
solution, in other words, the A matrix is singular. Hence, a potential at one point should 
specified to get a unique value of c. 

b) We got 0.8280 sec for tgcr sym.m which is modified code for symmetric matrices, 
and 1.7040 sec for ordinary tgcr.m. A machine with Pentium 4, 2GHz CPU and 1GByte 
memory is used for the measurement. The difference comes from the fact that the cost 
of orthogonalization does not increase as the GCR algorithm progresses if truncated back 
orthogonalization is used. (You can easily measure the time taken using tic and toc in 
MATLAB.) 

c) The change in the residuals for the purely Neumann problem and partly Dirichlet 
problem are given in Figs. 2. One reason that the problem with partly Dirichlet problem 
converges faster can be found from the eigenvalue distribution. From Figs. 3, one can see 
that the smallest eigenvalue for the purely Neumann problem is much smaller than the one 
for the partly Dirichlet problem. Hence, eliminating this eigenvalue will make the polynomial 
overshoot at the other eigenvalues, and the residual can only be made small when we put 
zeros near sufficiently many eigenvalues. For example, if p(x) is 

p(x) =
(x − 10−6)(x − 1) 

10−6 1 
, (6) · 

to eliminate a zero at 10−6 , p(2) ≈ 106 and we have to put zeros at larger eigenvalues to 
make the value small. 

Figs. 4, which is the magnified plot of Figs. 2, shows an interesting behavior of the partly 
Dirichlet case. That is, the residual drops quite a lot after 20 iterations. This means that it 
takes about 20 iterations for the boundary condition at one end to propagate to the other 
end, which makes sense for our case. 
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Figure 2: Plot of the residual for the purely Neumann and partly Dirichlet problems. 

Figure 3: Eigenvalue distributions for purely Neumann and partly Dirichlet problems. 
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Figure 4: Magnified plot of the residual for the purely Neumann and partly Dirichlet prob
lems. 
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