Introduction to Simulation - Lecture 26

Numerical Techniques in Action: Biomolecule Electrostatics for Drug Design and Electrical Analysis of Semiconductor Substrates

Jacob White

Thanks to Joe Kanapka, Joel Phillips, Shihhsien Kuo, Michael Altman, Jaydeep Bardhan, Bruce Tidor

SMA-HPC ©2003 MIT

Outline

- > Problem statement
- Finite-difference approach and problems
- Integral equation method and advantages
- Fast solver implementation
- Computational results
- Conclusion and Future work

The Problem of Drug Design

Electrostatics View

Ligand (drug molecule)

Receptor (protein molecule)

Minimize Electrostatic Binding Energy

An Electrostatic Analysis Problem

Simplified Mathematical Model: Salt Water Outside

Why Use this Simplified Model?

- Atomistic Level Simulation is too expensive
 - Salt ions and water molecules treated individually
- Continuum Model Matches Well with Experimental Data

Standard Finite-Difference Method set up boundary conditions and solve for grid potentials

Problem 1: Inaccurate Molecular Surface

Integral equation: Interior Problem

Integral equation: Exterior Problem

Advantages For Integral Equation Formulation

- Directly discretize surfaces
- Point charges treated exactly
- Handles infinite exterior

$$\int_{\Omega} \left[\varphi_{in}(\vec{r}') \frac{\partial G_{in}}{\partial n}(\vec{r};\vec{r}') - G_{in}(\vec{r};\vec{r}') \frac{\partial \varphi_{in}}{\partial n}(\vec{r}') \right] d\vec{r}' = \sum_{k=1}^{N} \frac{q_k}{\varepsilon_{low}} G_{in}(\vec{r};\vec{r}_k)$$
$$\int_{\Omega} \left[-\varphi_{in}(\vec{r}') \frac{\partial G_{out}}{\partial n}(\vec{r};\vec{r}') + G_{out}(\vec{r};\vec{r}') \frac{1}{\varepsilon_r} \frac{\partial \varphi_{in}}{\partial n}(\vec{r}') \right] d\vec{r}' = 0$$

Standard piecewise constant collocation discretization method

- Piecewise constant basis functions
- Collocation points at panel centroids

$\begin{bmatrix} D^{in} & S^{in} \\ D^{out} & S^{out} \end{bmatrix} \begin{bmatrix} a_j \\ b_j \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{N} \frac{q_k}{4\pi |\vec{r_i} - \vec{r_k}|} \\ 0 \end{bmatrix}$

$$D_{ij}^{in} = \int_{panel_j} \frac{\partial}{\partial n'} \left(\frac{1}{4\pi \left| \vec{r}_i - \vec{r'} \right|} \right) d\vec{r'} \quad S_{ij}^{in} = -\int_{panel_j} \frac{1}{4\pi \left| \vec{r}_i - \vec{r'} \right|} d\vec{r'}$$

$$D_{ij}^{out} = -\int_{panel_j} \frac{\partial}{\partial n'} \left(\frac{e^{-\kappa \left| \vec{r}_i - \vec{r'} \right|}}{4\pi \left| \vec{r}_i - \vec{r'} \right|} \right) d\vec{r'} \quad S_{ij}^{out} = \frac{1}{\varepsilon_r} \int_{panel_j} \frac{e^{-\kappa \left| \vec{r}_i - \vec{r'} \right|}}{4\pi \left| \vec{r}_i - \vec{r'} \right|} d\vec{r'}$$

A sphere molecule: comparison with analytical result

Use Fast Integral Equation Solver

 $O(N \log N)$ Matrix-vector multiply

- Multiple Green's functions
- Translation Invariant kernel

$$G_{in}(\vec{r};\vec{r}') = \frac{1}{4\pi |\vec{r} - \vec{r}'|}$$
$$G_{out}(\vec{r};\vec{r}') = \frac{e^{-\kappa |\vec{r} - \vec{r}'|}}{4\pi |\vec{r} - \vec{r}'|}$$

Pre-corrected FFT algorithm

- 1) projection of panel charges onto grid charges
- 2) grid potentials due to grid charges are computed by FFT
- 3) potentials on panel centroids are interpolated from grid potentials
- 4) direct interaction and correction among near neighbors

Picture courtesy of J. Phillips

Preconditioner on Two Examples

Qsi molecule

Preconditioner result: Qsi molecule

Preconditioner result: Ecm protein

Accuracy comparison with DelPhi

			E _{solvation} (kcal/mol)	
	# of dielectric panels	# of salt panels	pFFT	DelPhi
Water	17204	9330	-3.14	-3.17
TSA	34114	5842	-34.62	-34.75
ECM	82868	18596	-646.42	-653.88

Convergence Results of Ecm Protein pFFT DelPhi

Binding energy calculation of a protein-peptide complex

	Energy calculated (kcal/mol)			
	R _{desolvation}	L _{desolvation}	(R->L) _{interaction}	(L->R) _{interaction}
pFFT	14.52	24.47	130.80	130.91
DelPhi	14.51	24.47	131.03	131.03

Substrate coupling problem

The computational problem

- Real problem for designers:
 - Block isolation difficult in analog designs
 - Accurate simulation needed: calculate the conductance matrix numerically
- Key issues
 - Large number of contacts
 - Voltage at one contact drives current in *all* the contacts
- Want conductance matrix *G* so that Gv = i (voltage vector *v*, current vector *i*)
 - Hard to obtain: unlike 1/r or other known-kernel potential calculations, entries of G unknown a priori
 - Hard to use for circuit simulation

Circuit View

Circuit view of conductances

 $1 = i_j / g_{j2}$ $g_{j2} = i_j$

Conductances=currents

Matrix View

$$\begin{pmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{34} \\ g_{41} & g_{42} & g_{43} & g_{44} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} g_{12} \\ g_{22} \\ g_{32} \\ g_{42} \end{pmatrix} = \begin{pmatrix} i_1 \\ i_2 \\ g_{32} \\ g_{42} \end{pmatrix} = \begin{pmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \end{pmatrix}$$

- Matrix *G* in *standard basis*
 - *i*th voltage (input) vector component = voltage on contact *i*
 - *i*th current (output) vector component = current out of contact *i*

Multiple solves get G

- 1 column of G = 1 solve for currents given voltages
- *n* solves for *n* contacts
- Our solver
 - Finite-difference formulation (not essential)
 - Iterative solver
 (preconditioned conjugate gradient)

Discretization Mesh

Sparsification

- G is dense: 10000 contacts =
 - 100 million resistor model: hard for circuit simulator
 - 10000 solves each with millions of unknowns
- Does *G* have a sparse representation? Two benefits if it does:
 - Better circuit simulator performance
 - Faster extraction of G by reducing number of solves
- When is the coupling dense for practical purposes?
 - Always dense in terms of nonzeros
 - But can be *numerically* sparse: entries drop off very quickly
 - Goal: find a new representation where G is numerically sparse

How to sparsify?

- Two choices:
 - Threshold G
 - Zero out entries < threshold *t*
 - Fine for fast current dropoff
 - Serious accuracy loss for slow current dropoff
 - Change of basis
 - Get conductance matrix in new basis
 - *Fast current decay* in new basis: thresholding works well

The algorithm: motivation

- Currents due to standard basis functions (1 volt on one contact, 0 on all others) may decay slowly
- But current responses for two nearby contacts look similar
- Try *balanced* voltages for nearby contacts

 make average voltage 0 for new basis functions

Standard basis: faraway currents

Multilevel method: bottom level

SMA-HPC ©2003 MIT

Multilevel method: next level

More Precisely: Insure vanishing moments

- Just "balanced voltages": somewhat faster dropoff
- If several vanishing moments: faster dropoff
- Moments defined: $\mu_{\alpha,\beta,s}(\sigma) = \int_{s} x^{\prime \alpha} y^{\prime \beta} \sigma(x,y) dy dx$

with (x', y') = (x, y) - centroid(s)

- Want basis functions w/vanishing moments to order p: for our examples p = 2
- Balanced voltages: just 0-order moments

$$u_{0,0,s}(\sigma) = \int_{s} \sigma(x,y) \, dy \, dx$$

SMA-HPC ©2003 MIT

Multilevel method: moment view

• Voltage $\sigma(x, y)$: +1 -1 0 $\int \sigma(x, y) \, dx \, dy = 0$

Sparsified representation of G

- Get current responses to *transformed* voltage basis vectors
- Put current responses in the *transformed* basis
- Get wavelet-basis matrix G_w
 - Numerically sparse matrix
 - $G = QG_wQ'$
 - Q is change of basis matrix
 - Defined by multilevel transformation
- G_w is numerically sparse
 - Threshold out small entries to obtain
 - G_{wt} : cheap to apply (O(n log n) for n contacts) $QG_{wt}Q' \approx G$

Measuring results

- Sparsity of G_{wt} obtained by thresholding
 - Error of approximation depends on threshold
 - Arbitrary sparsity possible with high enough threshold
- Key is estimation of error $\operatorname{norm}(QG_{wt}Q'-G)$
 - maximum error vector/input vector length ratio: $norm(QG_{wt}Q'-G)$
 - How to get error estimate without calculating G?
 - Use iterative method for norm error estimation
 - Only need apply
 - Can apply G by using the solver
 - For comparison: find $\operatorname{norm}(G_t G)$
 - G_t is thresholded G

SMA-HPC ©2003 MI

Results: regular grid

- 1024 contacts on $\sigma/100\sigma$ conductivity profile
- G_{wt} : 16% nonzero, .001 scaled L2 error
- G_t : 37% nonzero, .3 scaled L2 error

G_{wt} sparsity structure

SMA-HPC ©2003 MIT

Results: irregular grid

- 1199 contacts on $\sigma/100\sigma$ conductivity profile
- G_{wt} : 11% nonzero entries, .002 scaled L2 error
- G_t : 21% nonzero entries, .2 scaled L2 error

Contact layout

G_{wt} sparsity structure

SMA-HPC ©2003 MIT

Wavelet Sparsification Summary

Example	Contacts	Sparsification	L2 Error
Regular	1024	6X	1e-3
Irregular	1199	9X	2e-3
Regular	4096	16X	2e-3
Irregular	10000	30X	1e-3

Reducing the number of solves

• Simple example: tridiagonal matrix G

- G(:,1), G(:,4), G(:,7) have no overlapping nonzeros
 - With one solve get Gv for any v
 - 3 solves get entire matrix!

Our sparsity structure: same principle

- Similar to tridiagonal example:
 - Add several voltage vectors
 - Feed the sum to the solver
 - OK to do this when?
 - Current responses have no overlapping non-zero entries
 - Reasonable if there are no overlapping large entries

Solve reduction results

Example	Contacts	Solve Reduction	L2 Error
Regular	1024	3x	1e-3
Irregular	1199	3x	3e-3
Regular	4096	8x	2e-3
Irregular	10000	20X	1e-3

Implies nearly $(N^2) \rightarrow (N)$ complexity reduction

Summary

- Biomolecule Electrostatics
 - Carefully Chosen Integral Formulation
 - Sparsification technique for multiple kernels
 - Problem specific preconditioning
- Sparsification of IC Substrate Coupling
 - Carefully chosen basis for representation (Wavelet like)
 - Overlapping solves exploits sparse representation

For everything you see, for everything you do, computational techniques are right for you