Introduction to Simulation - Lecture 25

Model-Order Reduction II

Jacob White

Thanks to Luca Daniel, Jing Li, Joel Phillips, Michal Rewienski,

MOR Outline

Dynamic Linear Case

Rational Functions
Projection Framework
Krylov Methods

Hankel Reduction and TBR

– Mention a few issues

Heat Conducting Bar Demonstration Example **State-Space Description** Heat In $T_0 =$ Tend $\frac{dx(t)}{dt} = \underbrace{A}_{NxN} x(t) + \underbrace{b}_{Nx1} \underbrace{u(t)}_{scalar}$ $\underline{y(t)} = \underline{c}^T x(t)$ Nx1scalar scalar output input $\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} h(x_1) \\ h(x_2) \\ \vdots \\ \vdots \\ h(x_N) \end{bmatrix}$ Given the A = |right scaling

State-Space Description

• Original Dynamical System - Single Input/Output $\frac{dx(t)}{dt} = \underbrace{A}_{NxN} x(t) + \underbrace{b}_{Nx1} \underbrace{u(t)}_{scalar} \underbrace{y(t)}_{scalar} = \underbrace{c}_{Nx1}^{T} x(t)$

• Reduced Dynamical System $\frac{dx_r(t)}{dt} = \underbrace{A_r}_{qxq} x(t) + \underbrace{b_r}_{qx1} \underbrace{u(t)}_{scalar} \underbrace{y_r(t)}_{scalar} = \underbrace{c_r}_{qx1}^T x_r(t)$ • q << N, but input/output behavior preserved

An Aside on Transfer Functions – Laplace Transform

Consider an ODE: $\frac{dx(t)}{dt} = Ax(t) + bu(t)$

Bilateral Laplace Transform: $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$

Key Transform Property: $sX(s) = \int_{-\infty}^{\infty} \frac{dx(t)}{dt} e^{-st} dt$

Rewrite the ODE in transformed variables sX(s) = AX(s) + bU(s) $Y(s) = c^T X(s)$ $\Rightarrow Y(s) = c^T (sI - A)^{-1} bU(s)$ $H(s) \leftarrow$ Transfer Function

An Aside on Transfer Functions – Meaning of H(s)

For Stable Systems, H(jw) is the frequency response

If $u(t) = e^{j\omega t}$ \leftarrow Sinusoid

then $y(t) =$	$H(j\omega)$	$)e^{j\omega t}$
---------------	--------------	------------------

Sinusoid with shifted phase and amplitude

 $H(j\omega)$

An Aside on Transfer Functions – EigenAnalysis

Transfer Function

 $H(s) = c^{T} (sI - A)^{-1} b$ Apply Eigendecomposition $H(s) = c^{T} E (sI - \lambda)^{-1} E^{-1} b$

Rational Transfer Function Representation

Original System Transfer Function $H(s) = \frac{\tilde{c}_{1}\tilde{b}_{1}}{(s-\lambda_{1})} + \dots + \frac{\tilde{c}_{N}\tilde{b}_{N}}{(s-\lambda_{N})} = \frac{b_{0} + b_{1}s + \dots + b_{N-1}s^{N-1}}{1 + a_{1}s + \dots + a_{N}s^{N}}$ **Rational Function Reduced Model Transfer Function** $b_0^r + b_1^r s + \dots + b_{q-1}^r s^{q-1}$ $H_r(s) =$ $1 + a_1^r s + \dots + a_q^r s^q$ Lower Order Rational Function Model Reduction = Find a low order rational function matching H(s)SMA-HPC ©2003 MIT

Rational Transfer Function Representation

Degrees of Freedom

Reduced Model Dynamical System $\frac{dx_{r}(t)}{dt} = \underbrace{A_{r}}_{qxq} x(t) + \underbrace{b_{r}}_{qx1} \underbrace{u(t)}_{scalar} \qquad \underbrace{y_{r}(t)}_{scalar} = \underbrace{c_{r}}_{qx1}^{T} x_{r}(t)$ $2q + q^{2}$ coefficients **Reduced Model Transfer Function** $H_r(s) = \frac{b_0^r + b_1^r s + \dots + b_{q-1}^r s^{q-1}}{1 + a_1^r s + \dots + a_q^r s^q}$ 2qcoefficients SMA-HPC ©2003 MIT

Rational Transfer Function Representation

Variable Changes Do not change transfer functions

Reduced Model Transfer Function

$$\frac{dx_r(t)}{dt} = A_r x(t) + b_r u(t) \quad y_r(t) = c_r^T x_r(t)$$
$$\implies H(s) = c_r^T (sI - A_r)^{-1} b_r$$

Similarity (x = Sw) Transformed Transfer Function $\frac{dw_r(t)}{dt} = S^{-1}A_r Sw(t) + S^{-1}b_r u(t) \quad y_r(t) = c_r^T Sw_r(t)$ $\Rightarrow H(s) = c_r^T S(sI - S^{-1}A_r S)^{-1} S^{-1}b_r = c_r^T (sI - A_r)^{-1} b_r$

Many Dynamical Systems have the same transfer function!! SMA-HPC ©2003 MIT

H(s)

Rational Transfer Function Representation

Rational Function Fitting by point matching

 $H_r(s)$

()

• cross multiplying generates a linear system For i = 1 to 2q $(1+a_1^r s_i + \dots + a_q^r s_i^q) H(s_i) - (b_0^r + b_1^r s + \dots + b_{q-1}^r s^{q-1}) = 0$

Rational Transfer Function Representation

Point Matching Matrix can be ill-conditioned

- Columns contain progressively higher powers of the test frequencies
- Must orthogonalize columns during construction

Rational Transfer Function Representation

Importance of Fitting at low frequency

Correct Steady State behavior requires accurate match at low frequencies

Rational Transfer Function Representation

Taylor Series Expansion and Moments

Original System Transfer Function Moments

$$H(s) = c^{T} (sI - A)^{-1} b = -c^{T} \underbrace{(I - sA^{-1})^{-1}}_{\text{Taylor Expand with respect to s}} A^{-1} b$$

$$Taylor Expand with respect to s$$

$$H(s) = -c^{T} (I - sA^{-1})^{-1} A^{-1} b = \sum_{k=0}^{\infty} c^{T} A^{-(k+1)} b s^{k}$$

$$H(s) = \underbrace{c^{T} A^{-1} b}_{m_{0}} + \underbrace{c^{T} A^{-2} b}_{m_{1}} s + \underbrace{c^{T} A^{-3} b}_{m_{2}} s^{2} + \dots = \sum_{k=0}^{\infty} m_{k} s$$

Moments

Rational Transfer Function Representation Moment Matching for accurate

low frequency behavior

Reduced Model Matches Original Systems Moments

$$H_r(s) = \frac{b_0^r + b_1^r s + \dots + b_{q-1}^r s^{q-1}}{1 + a_1^r s + \dots + a_q^r s^q} = m_0 + m_1 s + \dots + m_{2q-1} s + \dots$$

Cross-Multiplying and Matching Terms

Point matching: can be very inaccurate in between points

Rational Transfer Function Representation

Point Matching Versus Moment matching

Moment (derivatives) matching: accurate around expansion point, but inaccurate on wide frequency band

Heat Conducting Bar

Heat applied at one end, temperature measured at the other

Heat $T_0 =$ T_{end} $\frac{dx(t)}{dt} = \underbrace{A}_{NxN} x(t) + \underbrace{b}_{Nx1} \underbrace{u(t)}_{scalar}$ $\underbrace{y(t)}_{scalar} = \underbrace{c}_{Nx1}^{T} x(t)$ scalar scalar output input $A = \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$ $b = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ \vdots \end{bmatrix}$ $C = \begin{vmatrix} 0 \\ \vdots \\ 0 \end{vmatrix}$

Keeping Eigenmodes versus matching moments Heat Flow Results

Rational Transfer Function Representation

Explicit Moment Matching Problem

System of equations extremely ill-conditioned

Columns become linearly dependent for large q!

Rational Transfer Function Representation

Problems with explicit fitting methods

- Linear Systems for fitting ill-conditioned

 Need specialized algorithms which avoid
 explicit fitting matrix construction
- Rational function must be converted to state-space
 - Needed by most simulation tools
 - Requires root finding procedure, very sensitive to parameter variation

SMA-HPC ©2003 MIT

Projection Framework

Dimension Reducing Change of Variables

Projection Framework

Projection Framework

Assumed Biorthogonal Relationship between V and U

- Original System
 - $\dot{x} = Ax + bu, \ y = c^T x$
- Substitute $x = U_q x_r$
 - $U_q \dot{x}_r = A U_q x_r + b_r u, \ y_r = c^T U_q x_r$
- Test by multiplying by V
 - $V_{q}^{T}U_{q}\dot{x}_{r} = V_{q}^{T}AU_{q}x_{r} + V_{q}^{T}b_{r}u, \ y_{r} = c^{T}U_{q}x_{r}$
- Previous Slide Assumed that V and U biorthogonal $V_q^T U_q = I \Longrightarrow \dot{x}_r = A_r x_r + b_r u, \ y_r = c_r^T x_r$

• No explicit A need, Only Matrix-vector products For each column of U_q Multiply by A, then dot result with columns of V_q

Projection Framework

V=U can preserve definiteness properties

Original System

$$\frac{dx}{dt} = Ax + bu, \ y = c^T x$$

- Reduced System

 dx_r/dt = U^T_q AU_q x_r + U^T_q b_ru, y_r = c^TU_qx_r

 If A is (+ or -) definite, so is A_r

 Preserves stability in the definite case
 - Can also preserve passivity

Projection Framework

Approaches for Picking U and V

- Use Eigenvectors
- Use Time Series Data
 Compute x(t₀), x(t₁), ..., x(t_k)
 Use the SVD to pick q < k important vectors
- Use Frequency Domain Data
 -Compute X(s₁), X(s₂), ..., X(s_k)
 -Use the SVD to pick q < k important vectors
- Use Krylov Subspace Vectors?
- Use Singular Vectors of System Grammians? SMA-HPC ©2003 MIT

The order k Krylov subspace generated from matrix A and vector b is defined as

$\kappa_k(A,b) \equiv span\{b,Ab,A^2b,\ldots A^{k-1}b\}$

Projection Framework

Moment Matching Theorem

If

$$span\{\vec{u}_{1},...,\vec{u}_{q}\} \supseteq \bigcup_{j=1}^{J} \kappa_{k_{j}^{b}} \left(\left(A - s_{j}I\right)^{-1}, \left(A - s_{j}I\right)^{-1}b \right)$$

And

$$span\left\{\vec{v}_{1},...,\vec{v}_{q}\right\} \supseteq \bigcup_{j=1}^{J} \kappa_{k_{j}^{c}} \left(\left(A-s_{j}I\right)^{-T},\left(A-s_{j}I\right)^{-T}c\right)\right)$$

Then

$$\frac{\partial^l H(s_j)}{\partial s^l} = \frac{\partial^l H_r(s_j)}{\partial s^l} \quad \text{for}$$

for
$$l = 0, ..., k_j^b + k_j^c - 1$$

Projection Framework

Special Case Moment Matching Theorem

If U and V are such that $U = V = \{\vec{u}_1, ..., \vec{u}_q\}$ and $U^T U = I$ $span\{\vec{u}_1,...,\vec{u}_q\} = span\{A^{-1}b, A^{-2}b,...,A^{-q}b\}$ Then the first q moments of reduced system match $H(s) = -c^{T} (I - sA^{-1})^{-1} A^{-1}b = \sum_{k=1}^{\infty} c^{T} A^{-(k+1)} bs^{k}$ $H_{r}(s) = -c_{r}^{T} \left(I - sA_{r}^{-1}\right)^{-1} A_{r}^{-1} b_{r} = \sum_{r}^{\infty} c_{r}^{T} A_{r}^{-(k+1)} b_{r} s^{k}$ $c^{T}A^{-(k+1)}b = c^{T}U_{q}(U_{q}^{T}AU_{q})^{-(k+1)}U_{q}^{T}b$ $k = \{0, ..., q-1\}$

Tranfer function

First Invert A before applying reduction $A^{-1}\dot{x} = x + A^{-1}bu, \ y = c^T x \implies H(s) = -c^T (I - sA^{-1})A^{-1}b$ Unchanged

Form reduced model by projecting inverse of A

$$\underbrace{V_q^T A^{-1} U_q}_{A_r^{-1}} \dot{x}_r = x_r + V_q^T A^{-1} bu, \ y_r = c_r^T x_r$$

$$\underbrace{A_r^{-1}}_{A_r^{-1}}$$

The Projection Theorem Still Holds!!

Model-Order Reduction

Projection Alternative

Heat Flow Results

Model-Order Reduction

Noninverse Formulation

Heat Flow Results

Computing U

Need for Orthogonalization

$\{A^{-1}b, A^{-2}b, ..., A^{-k}b\}$ can not be computed directly

Vectors will line up with dominant eigenspace!

Computing U

Need for Orthogonalization

• Only requires solves with A and vector inner products SMA-HPC ©2003 MIT

 U_{a}

0

 $H_{q,q-1}$

H

qq

0

 \dot{H}_{a}

Computing U

Arnoldi Identities Continued

Multiplying U by the inverse of A yeilds $A^{-1}U_{a} = U_{a}H_{a} + H_{a+1,a}\vec{u}_{a+1}e_{a}^{T}$ Multiplying by the transpose of U $U_{a}^{T}A^{-1}U_{a} = U_{a}^{T}U_{a}H_{a} + U_{a}^{T}H_{a+1}a\vec{u}_{a+1}e_{a}^{T}$ By orthogonality The Projection $U_a^T A^{-1} U_a = H_a = A_r^{-1}$ \leftarrow Alternative Reduced Model

Two Existing Approaches

- Moment Matching
 - Accurate over a narrow band.
 - Matching function value and derivatives.
 - Cheap:
 - O(n) if A is very sparse.

- Truncated Balanced Realization
 - Wide-band accuracy.
 - Does not follow all details.
 - Theoretical error bound.
 - Expensive: O(n³)

Reminder about Eigenanalysis

Transfer Function $H(s) = c^T (sI - A)^{-1} b$ **Apply Eigendecomposition** $H(s) = c^{T} E(sI - \lambda)^{-1} E^{-1}b$ $= \tilde{c}^{T} \begin{bmatrix} \frac{1}{s - \lambda_{1}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{1}{s - \lambda_{N}} \end{bmatrix} \tilde{b} \implies H(s) = \sum_{i=1}^{N} \frac{\tilde{c}_{i} \tilde{b}_{i}}{s - \lambda_{i}}$

Should keep controllable and observable "modes", but should they be the eigenmodes? Truncated Balanced Realization: Non-symmetric Systems

• 1. Calculate controllability gramian, P, and observability gramian, Q, by solving two Lyapunov equations,

 $\mathbf{A}\mathbf{P} + \mathbf{P}\mathbf{A}^{\mathrm{T}} + \mathbf{b}\mathbf{b}^{\mathrm{T}} = \mathbf{0},$ $\mathbf{A}^{\mathrm{T}}\mathbf{Q} + \mathbf{Q}\mathbf{A} + \mathbf{c}^{\mathrm{T}}\mathbf{c} = \mathbf{0}.$

- 2. If have Cholesky factors, $\mathbf{P} = \mathbf{Z}_{b}\mathbf{Z}_{b}^{T}, \mathbf{Q} = \mathbf{Z}_{c}\mathbf{Z}_{c}^{T}$
- 3. Projection: a. $\mathbf{U}_{c}\mathbf{D}\mathbf{U}_{b}^{T} = \mathbf{Z}_{c}^{T}\mathbf{Z}_{b}$,

b. $\mathbf{S}_{\mathbf{b}} = \mathbf{Z}_{\mathbf{b}} \mathbf{U}_{\mathbf{b}} (:, 1:k) \mathbf{D}^{-\frac{1}{2}} (1:k, 1:k),$ $\mathbf{S}_{\mathbf{c}} = \mathbf{Z}_{\mathbf{c}} \mathbf{U}_{\mathbf{c}} (:, 1:k) \mathbf{D}^{-\frac{1}{2}} (1:k, 1:k),$

c. $\mathbf{A}_{tbr}^{k} = \mathbf{S}_{c}^{T} \mathbf{A} \mathbf{S}_{b}, \ \tilde{\mathbf{b}}_{tbr}^{k} = \mathbf{S}_{c}^{T} \tilde{\mathbf{b}}, \ \mathbf{c}_{tbr}^{k} = \mathbf{c} \mathbf{S}_{b}$

Properties of the TBR Reduction

- Globally accurate reduced model.
- Maximum frequency domain error is bounded by,

 $\left\|G(jw) - G_{tbr}^{k}(jw)\right\|_{L^{\infty}}$ $\leq 2(\sigma_{k+1} + \sigma_{k+2} + \dots + \sigma_{n}) \equiv \varepsilon_{tbr}.$

- Guaranteed stable.
- Expensive:
 - Lyapunov equation solve: $O(n^3)$.
 - Singular value decomposition: $O(n^3)$.

Solving Lyapunov Equations

- How to find (approximate) P, Q, or just as good, their factors Z_b, Z_c, efficiently?
- No expensive operations on A: no matrix decompositions.
- Cheap operations: matrix-vector products and solves.
- Low rank approximations.

 $- Z_{b}$, and Z_{c} have only a few columns.

• Recent Approach Cholesky-Free ADI methods

Reduction Based on Hankel Operators

Hankel Operator Maps Past Inputs to Future Outputs

The Hankel Operator has an SVD

- The Singular Values of the Hankel Operator $\sigma_i(H) = \sqrt{\lambda_i(PQ)}$
- P, Q are Observability and Controllability Grammians
 - P and Q are NxN matrices
 - Hankel Operator has a finite set of singular values
- Reduction by ignoring small singular values

 Just like with any matrix

Summary

- Dynamic Linear Case
 - Rational Functions
 - Projection Framework
 - Krylov Methods
- TBR and Hankel Reduction
 - Optimal Reduced Model
 - Extremely computationally expensive