A random process $\{Z(t)\}$ is a collection of rv's, one for each $t \in \mathbb{R}$.

For any given epoch $t \in \mathbb{R}, Z(t)$ is a rv. It maps each $\omega \in \Omega$ into a real number $Z(t, \omega)$.

For any given $\omega \in \Omega,\{z(t) ; t \in \mathbb{R}\}$ is a sample function. It maps each $t \in \mathbb{R}$ into a real number $Z(t, \omega)$.

A random process is defined by a rule establishing a joint density $f_{Z\left(t_{1}\right), \ldots, Z\left(t_{k}\right)}\left(z_{1}, \ldots, z_{k}\right)$ for all k, t_{1}, \ldots, t_{k} and z_{1}, \ldots, z_{k}.

Our favorite way to do this is $Z(t)=\sum Z_{i} \phi_{i}(t)$.
Joint densities on Z_{1}, Z_{2}, \ldots define $Z(t)$.

GAUSSIAN VARIABLES

Normalized Gaussian rv has density

$$
f_{N}(n)=\frac{1}{\sqrt{2 \pi}} \exp \left[\frac{-n^{2}}{2}\right]
$$

Arbitrary Grv Z is shift by \bar{Z}, scale by σ^{2}

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[\frac{-(z-\bar{Z})^{2}}{\left(2 \sigma^{2}\right)}\right]
$$

We describe the distribution of this Grv as $\mathcal{N}\left(\bar{Z}, \sigma^{2}\right)$

Refer to a k-tuple of rv's as $\vec{Z}=\left\{Z_{1}, \ldots, Z_{k}\right\}$.
The set of k-tuples of rv's over a sample space is a vector space (but not the vector space $\mathbb{R}^{(k)}$ of real k-tuples).

Here we only want to use vector notation rather than any vector properties.

If N_{1}, \ldots, N_{k} are iid $\mathcal{N}(0,1)$, then joint density is

$$
\begin{aligned}
f_{\vec{N}}(\vec{n}) & =\frac{1}{(2 \pi)^{k / 2}} \exp \left(\frac{-n_{1}^{2}-n_{2}^{2}-\cdots-n_{k}^{2}}{2}\right) \\
& =\frac{1}{(2 \pi)^{k / 2}} \exp \left(\frac{-\|\vec{n}\|^{2}}{2}\right) .
\end{aligned}
$$

Note spherical symmetry.

A k-tuple \vec{Z} of rv's is zero-mean jointly Gaussian if, for real $a_{i j}$, and for iid $\mathcal{N}(0,1)$ rv's $\left\{N_{1}, \ldots, N_{m}\right\}$,

$$
Z_{i}=\sum_{j=1}^{m} a_{i j} N_{j}
$$

i.e., \vec{Z} is zero-mean jointly Gauss if $\vec{Z}=\mathbf{A} \vec{N}$.

Jointly Gauss is more restrictive than individually Gauss; must be linear combinations of iid $\mathcal{N}(0,1)$.

Jointly Gauss is more general than independent Gauss.

Think of $\vec{z}=\mathbf{A} \vec{n}$ in terms of sample values and take $m=k$.
$\mathbf{A} \vec{e}_{j}$ maps \vec{e}_{j} into j th column of \mathbf{A}.
Thus unit cube is mapped into parallelepiped whose edges are the columns of A.

$$
Z_{1}=N_{1}+N_{2} \text { and } Z_{2}=N_{1}+2 N_{2}
$$

The mapping $\vec{z}=\mathbf{A} \vec{n}$ maps the unit cube $[0, \delta], \ldots[0, \delta]$ into the parallelepiped with sides $\left[0, \delta \vec{a}_{1}\right], \ldots,\left[0, \delta \vec{a}_{m}\right]$.

The volume of this parallelepiped is $|\operatorname{det} \mathbf{A}|$.
It maps $\left[n_{1}, n_{1}+\delta\right], \ldots\left[n_{m}, n_{m}+\delta\right]$ into

$$
\left[n_{1} \vec{a}_{1},\left(n_{1}+\delta\right) \vec{a}_{1}\right], \ldots,\left[n_{m} \vec{a}_{m},\left(n_{m}+\delta\right) \vec{a}_{m}\right]
$$

Assuming that \mathbf{A} is non-singular, the mapping is invertible.

The probability of any given cube equals the probability of the corresponding parallelepiped.

$$
f_{\vec{N}}(\vec{n}) \delta^{n} \approx f_{\vec{Z}}(\vec{z}) \delta^{n} \operatorname{det} \mathbf{A}
$$

where $\operatorname{det} \mathbf{A}$ is the volume of the parallelepiped with sides $\vec{a}_{1}, \ldots, \vec{a}_{m}$. Going to the limit $\delta \rightarrow 0$,

$$
f_{\vec{Z}}(\mathbf{A} \vec{n})=\frac{f_{\vec{N}}(\vec{n})}{|\operatorname{det} \mathbf{A}|}
$$

$$
\begin{gathered}
f_{\vec{Z}}(\mathbf{A} \vec{n})=\frac{f_{\vec{N}}(\vec{n})}{|\operatorname{det} \mathbf{A}|} \quad f_{\vec{Z}}(\vec{z})=\frac{f_{\vec{N}}\left(\mathbf{A}^{-1} \vec{z}\right)}{|\operatorname{det} \mathbf{A}|} \\
\vec{f}_{\vec{Z}}(\vec{z})=\frac{1}{(2 \pi)^{k / 2}|\operatorname{det}(\mathbf{A})|} \exp \left(\frac{-\left\|\mathbf{A}^{-1} \vec{z}\right\|^{2}}{2}\right) \\
=\frac{1}{(2 \pi)^{k / 2}|\operatorname{det}(\mathbf{A})|} \exp \left[-\frac{1}{2} \vec{z}^{\mathrm{T}}\left(\mathbf{A}^{-1}\right)^{\mathrm{T}} \mathbf{A}^{-1} \vec{z}\right]
\end{gathered}
$$

For zero-mean rv's, covariance of Z_{1}, Z_{2} is $\mathrm{E}\left[Z_{1} Z_{2}\right]$.
For m-tuple \vec{Z}, covariance is matrix whose i, j element is $\mathrm{E}\left[Z_{i} Z_{j}\right]$. That is

$$
\mathbf{K}_{\vec{Z}}=\mathrm{E}\left[\vec{Z} \vec{Z}^{\top}\right]
$$

For $\vec{Z}=\mathbf{A} \vec{N}$, this becomes

$$
\begin{gathered}
\mathbf{K}_{\vec{Z}}=\mathbf{E}\left[\mathbf{A} \vec{N} \vec{N}^{\top} \mathbf{A}^{\top}\right]=\mathbf{A} \mathbf{A}^{\top} \\
\mathbf{K}_{\vec{Z}}^{-1}=\left(\mathbf{A}^{-1}\right)^{\top} \mathbf{A}^{-1} \\
\vec{f}_{\vec{Z}}(\vec{z})=\frac{1}{(2 \pi)^{k / 2} \sqrt{\operatorname{det}\left(\mathbf{K}_{\vec{Z}}\right)}} \exp \left[-\frac{1}{2} \vec{z}^{\top} \mathbf{K}_{\vec{Z}}^{-1} \vec{z}\right]
\end{gathered}
$$

For $\vec{Z}=Z_{1}, Z_{2}$, let $\mathbf{E}\left[Z_{1}^{2}\right]=\mathbf{K}_{11}=\sigma_{1}^{2}, \mathbf{E}\left[Z_{2}^{2}\right]=$ $\mathrm{K}_{11}=\sigma_{2}^{2}$. Let ρ be normalized covariance

$$
\begin{gathered}
\rho=\frac{\mathbf{E}\left[Z_{1} Z_{2}\right]}{\sigma_{1} \sigma_{2}}=\frac{\mathbf{k}_{12}}{\sigma_{1} \sigma_{2}} . \\
\operatorname{det}\left(\mathbf{K}_{\vec{Z}}\right)=\sigma_{1}^{2} \sigma_{2}^{2}-k_{12}^{2}=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right) .
\end{gathered}
$$

For \mathbf{A} to be non-singular, we need $|\rho|<1$. We then have

$$
\begin{gathered}
\mathbf{K}_{\vec{Z}^{-1}}==\frac{1}{1-\rho^{2}}\left[\begin{array}{cc}
1 / \sigma_{1}^{2} & -\rho /\left(\sigma_{1} \sigma_{2}\right) \\
-\rho /\left(\sigma_{1} \sigma_{2}\right) & 1 / \sigma_{2}^{2}
\end{array}\right] \\
\vec{f}_{\vec{Z}}(\vec{z})=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left(\frac{-{\frac{z_{1}}{\sigma_{1}} 2}^{2}+2 \rho \frac{z_{1}}{\sigma_{1}} \frac{z_{2}}{\sigma_{2}}-\frac{z_{2} 2}{\sigma_{2}}}{2\left(1-\rho^{2}\right)}\right)
\end{gathered}
$$

Lesson: Even for $k=2$, this is messy.

MIT OpenCourseWare
http://ocw.mit.edu
6.450 Principles of Digital Communication I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

