
MITOCW | ocw-6-450-f06-2003-09-10_300k

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: I'm going to review what we did with the craft inequality just a little bit, because

evidently a number of people were confused about this. I'm going to put a little more

notation in with it. For some people, notation helps. For other people, it hinders

things. But after you've thought about it a little bit, a little more notation can certainly

be helpful.

What we're trying to do in this craft inequality is, we're thinking of a set of symbols

where, supposing that there's a codeword for each symbol, c of x is the codeword

for symbol x, which is a string of binary digits. y1 up to y sub n. In the world of two-

toed sloths, the representation of numbers that sloths use is binary, base 2. And

therefore, they use the number associated with some sequence of bits like this

would be the sum of y sub i, times 2 to the minus i.

In other words, it's the same thing as a decimal, except it's in a world where people

have two fingers instead of ten. There's an interval associated with this number,

also. And the interval is what you would get if you took an arbitrary real number and

rounded it down to l sub i. Well, in this case to m binary digits. So that interval, then,

is the number itself. And the other side of the interval is that number itself -- the two-

toed sloth didn't like what I was going to say about it, and it changed my slide.

So, is that extra factor the 2 to the minus n, there. In other words, any number in

that range, if you round it down to m significant binary digits is going to the this

number here.

Well the point of this, if the number, namely, this base 2 expansion of a number y

prime is in this interval, then y is going to be a prefix of y prime. Let me just give you

some examples of that because saying it in words is confusing, the idea is very

1



simple.

Suppose you have a binary string, 011. That corresponds to the number 3/8.

Namely, 1/4 plus 1/8. And the interval there is going to be the interval from 3/8,

including 3/8, up to 1/4. But not including 1/4. Namely, 1/4 will be represented as --

the sloth really is hitting hard this morning. Maybe I'm the sloth. OK. There we go.

From 3/8 to 1/2. Namely, 1/2 is just 1. Nothing more than that. Or it could be 10 or

100, and so forth.

So then, as an example, 011 is going to be a prefix of all of these quantities here.

That's a prefix of 0111 because 0111 is 3/8 plus 1/16, which is in that interval we're

talking about.

0110 is a more interesting case. Because 0110 is itself, the number associated with

it, is just 3/8. But what this is saying is, if you take the same number but expand it to

four digits, according to what this says, r of y like is then in this interval. And

therefore this prefix situation holds. So this is a prefix of this.

Why do I make it so complicated? I make it so complicated because I want to talk

about the length of that interval. And the length of these intervals is denoted in this

diagram here. Anytime I have a number expressed to n binary digits, it covers an

interval of 2 to the minus n. And because of this prefix property, as soon as one

number covers an interval, no other number have its base in that interval. In other

words, all of these intervals have to be disjoint, exactly as is indicated here. So

when you add up the size of all these intervals, you have to get something less than

or equal to 1. And that's the proof of the craft inequality.

So, let's go on and talk about discrete source probabilities. Now the two-toed sloth

has gotten his machine out there, he's really mad at me this morning.

If we try to model English text, you know that some letters are far more probable

than others. Namely, if you take an enormous amount of English text and you

measure the relative frequency with which each letter occurs, you'll get more or less

stable relative frequencies if you take enough text. And these letters are far more

2



probable than these letters. So that gives you part of a model. You can also say that

successive letters are going to be very dependent.

Namely, t is very often followed by h, and h is often preceded by t. q u is even more

of a case here, because as far as English language words are concerned, u always

follows q. Some letter strings are words. Other letter strings are not words. There

are constraints on grammar. And what is really the clincher, which says there's no

way you're going to model English in any sensible nice way, is meaning. And even

worse than that, depending on who writes the English, it might have meaning or it

might not have meaning. And for those English texts that don't have any meaning,

the entropy is going to depend very much on whether the meaningless text is

written by a salesperson or it's written by James Joyce. And in one case you have --

well, in one case you have an enormous amount of freedom in what this sequence

of letters are. And in the other case you have letters which are very, very

constrained.

So what's the point of this? The point of this is, if you're interested in trying to find

the source coding method for English, what you don't want to do is to start out trying

to get the best statistical model of English that you can. Because it's a losing

proposition. And by trying to do that, you'll spend all your time trying to get the

model. And you won't get any insight into what you ought to do as far as source

coding is concerned.

This is pretty much true throughout all of technology. You don't solve problems by

first getting too far into the details of what the problem is, before you start thinking

about structures of possible solutions. In other words, we always deal with

technological problems by dealing with toy problems first.

Now, there's a difference between engineers who worry about toy problems.

Because engineers, if they hate theory, usually, don't say what the toy problem is.

But they have that toy problem very firmly in the back of their mind, because of all

their experience. Theoreticians, on the other hand, make their models very, very

explicit. They don't often like to say that they're toy models because DARPA doesn't

3



tend to support things that are working on toy models. So they try to conceal this.

And often they just hide the fact that they're using a model. So, all of this becomes

very complicated. But, for you, if you're trying to do either engineering or

mathematics or teaching, or just be a sensible person.

When you're dealing with these problems, be explicit about what your models are.

Try to understand the toy problems before you understand the more complicated

problems. If you understand that out of this course, it'll be a worthwhile course for

you. And, of course, you won't understand it until you get lots more experience. But

believe me, that's the way it is.

OK, so that's the whole point of this. You want to start with simple toy models. And

I'm not just justifying the fact that we're going to study this incredibly simple model

here, which is a toy model. But by studying this you will see that everything else

follows. If you read Claude Shannon's work on information theory, this, in fact, is

where he started. He started with a beautiful description of trying to model the

English language. Finally wound up with talking about this. The conclusions he

drew, from studying these discrete memory sources, lead to his general theorems

about data compression on sources. They led to his general theorems about the

capacity of channels. They led to the idea that you want to separate source coding

from channel coding, and finally, they led to all of the modern ideas that we have

about quantization. In other words, the simple ideas you get out of this generalize

directly to everything that's known about information theory.

So. Enough philosophy, let's get on with the business of what we're trying to do. A

discrete memoryless sources has the following properties. The source output has to

be an unending sequence, x1, x2, x3, blah, blah, blah, of random letters drawn from

a finite alphabet, x. In other words, we are taking these real sources. And we're

saying, let's make them not real now. Let's put a probability measure on them. And

in this probability measure, one of the things that the probability measure will do will

be to describe the probability on each one of these letters and the sequence in

which it's coming out of the source.

4



Each source output, x1, x2, blah, blah, blah, is selected from a common alphabet.

Namely, if you're using English on one letter of the sequence, you're going to use

English on every letter of the sequence. Going to use a common probability

measure, with some probability mass function p sub x of x. This notation means this

is the probability mass function for the chance variable X. A chance variable is like a

random variable, except the objects are not necessarily numbers. The objects can

be anything. So, a chance variable is a generalization of a random variable. So this

probability mass function talks about the probability of each of the symbols in this

alphabet x.

Then the final thing is, each source output, x sub k, is statistically independent of all

other source outputs, x1 up x k minus 1, and x k plus 1 on to forever. This is a nice

example, because if you're going to specify a source probabilistically, you have to

somehow find a way of explaining what the probability of every possible event within

this source is. This is an easy way of doing it. You say they're independent. And

then you can find the probability of anything you want to find. So that's a generic

way of putting probability measures on things.

So then, we want to go into the idea of prefix-free codes for these discrete memory

of the sources. We've already talked about prefix-free codes. We talked about the

craft inequality. You might have thought it was a little bit strange talking about the

strictly combinatorial property of codes without talking at all about the probabilities,

which are the things that led us into talking about these codes in the first place.

Namely, we want to use unequal length, variable length codes. Because of the fact

that some letters are more likely than other letters. And eventually we'll be using

them because of all these constraints between different words.

So, for notation, let l of x be the length of the codeword for letter x in, the alphabet

capital X. ok so that's the same as this y1 y2 up to y sub n. At some strength of

binary symbols. Capital L of x is a random variable, where capital L of x is equal to

little l of x, where capital X equal to x. Now, what the heck does that mean? It's just

notation. In other words, what we're starting out with is this ensemble of letters. We

have a probability assignment on each letter in that alphabet. And then what we

5



would like to talk about is a length function on those letters. So we have little l of x,

which is defined for each x.

We then want to talk about this as a random variable. Because when we choose

some random letter, x, little x, of this ensemble, capital X, l of x becomes a random

variable. We will always, in this course, use capital letters to talk about random

variables. And we will always use little letters to talk about things which are not

random variables. Excuse me, not not random variables but random variables or

chance variables. I think we can probably leave it open now. It seems as if the sloth

has gone away.

So then we want to talk about the expected value of the length. You talk about the

expected value of something, you're talking about the expected value of a random

variable. We will also denote the expected value of this random variable L with a bar

over it, which is the sum over the letters in the alphabet, of p of x times L of x.

So all this is what you would do anyway if you never thought about this. Until, at

some point, when you're taking a quiz or something and start to get confused and

say, what is this stuff all about? I don't have any idea what this means after you've

written five pages of stuff. So, it's worthwhile spending a little bit of time sorting that

out.

So, L bar is the number of encoder output bits per source symbol. In some strange

sense. Namely, it's this expected value. Now, to finish this off, if we want to look at

the number of binary digits to come out of the source when a long sequence of

letters come out of the source -- A long sequence of letters. x1, x2, x3, and so forth,

come out of the source. They go into the encoder. The encoder is mapping each

letter that comes out of the source into this codeword c of x. So we have a

sequence of codewords which are all concatenated together. And, therefore, the

total number of binary digits which has come out of the source corresponding to

these n symbols that have come out of the source, is the sum of L of x1 plus L of x2

plus of x3 plus L of x4, and so forth. So we have a sum of independent random

variables.

6



Now, what do you know about sums of independent random variables? Well, the

one thing you ought to know about, and which should be stamped on your brain

because it's the central thing that makes any probabilistic theory make sense, it's

the only way that we can ever understand our environment. You look at the past.

You try to figure out from the past what's going on in the future. And the only way

you can do that, the only tool you have, really, is this law of large, numbers. Which

says, when you see a long sequence of things, from that long sequence of things,

you sort of figure out what's going on. If you're dealing with a random variable, the

thing you do is add up all of these numbers. You divide by the total number of them

that you have. And that gives you the expected value. It gives you a typical value.

What the law of large numbers really says is, if you look at the sum of binary digits

out of this encoder, over a very long period of time, divide by the total number of

symbols, that's a random variable again. And this random variable is, with high

probability, going to be very, very close to this expected value, which is this quantity

here. In other words, the ensemble average, which is this, is going to be very close

to the time average. And the time average, now, is a random variable. And that's

what the law of large numbers says.

You see, the problem that we all have, dealing with real world problems, is that

there's nobody to tell us this is what the ensemble is. Unless you believe somebody

that doesn't know. And the only real evidence that you have is the actual sequence.

And from the actual sequence, you then look at what happens for this particular

sequence. You then build a model. And your model, by definition, has the expected

value of L going to be equal to the expected value in the model that you've chosen.

So. What's your objective? Your objective in trying to form a prefix-free code, then,

is to find a set of integers, L of x, which satisfy the Kraft inequality. And they

minimize L bar. In other words, what we're trying to do is, we're trying to choose a

code which minimizes the expected length of the code. Which is really, over a long

period of time, going to minimize the number of binary digits that come out of the

source encoder. What we want to do is to choose these integers to minimize this.

So what we're going to do now is, suppose our alphabet is just 1, 2, up to capital N.

7



What am I doing here? I'm saying, we don't care about what these symbols are

called, anyway. It's totally irrelevant what the names of the symbols are. So I will

name them 1, 2, up to capital N. Probability mass function, then, I can denote as p

sub 1 up to p sub capital N. In other words I've gotten rid of all these axes that were

lousing up our equations all along. Now, I'll denote the unknown lengths by l1 up to l

sub M. So the problem is, somebody gives you this set of numbers. p1 to p sub M,

which is a PMF. In other words, these numbers add up to 1. And tells you, I want a

prefix-free code which minimizes this expected length. Namely, the expected value

corresponding to these lengths here. So, the expected length, to minimize it, what

we want to do is to minimize over the choice of l1 up to l sub M. Subject to the craft

inequality, we want to minimize this expected value.

So we have a nice, clean, mathematical problem now. We want to minimize this

sum, subject to this constraint. And the constraint includes the fact that all of these

things have to be integers. Well, for those of you who have studied minimization,

there's a funny thing in here. Because integer minimization problems tend to be

very, very nasty. And, therefore, you look at this and you say, this is probably

something I'm going to have trouble solving. Strangely enough, it isn't. But you

would think it probably is something which will be hard to solve.

So, since integers louse up minimization problems, what do we do? Well, we say,

just for fun let's try to solve this problem without the integer constraint on it. Let's

see what that leads to, and see if we can do anything with that. So we say, OK, let's

try to minimize this function here over the integers l1 to l sub M, subject to this

constraint. So we're minimizing this, subject to this constraint.

Now, an easy way to do that -- yes. AUDIENCE: Are you

saying that side length is not a fixed probability.

PROFESSOR: No, I still have these fixed probabilities. I still have p1 up to p sub M, as known

probabilities. But I'm going to say, let's suppose I can choose a length which is two

point five bits instead of two bits.

8



AUDIENCE: You're saying the shortest length [UNINTELLIGIBLE]

PROFESSOR: Well, we're going to wind up there eventually. But for now, all I want to do is to look

at this problem. If I start out by saying, assign shortest lengths to the biggest

probabilities, I have two problems. One is, it's a little hard to prove to you that I want

to do that. Although we'll do that later today. And the other is, it doesn't really give

you the general properties that we want to know about this. So, for those two

reasons, I want to just attack this as a straightforward mathematical problem. If

you're a computer scientist, this looks strange. Because computer scientists like to

attack problems by algorithms. Analog engineers like to attack problems by writing a

complicated formula, and taking derivatives, and all sorts of things like that. We're

going to be doing both of those things in this course. And you'll see that both of

them lead to certain advantages.

And here, we're taking, where the analog engineer's approach is saying, suppose

this is a bunch of numbers. I want to minimize this function over a set of numbers, l1

up to l sub capital M. So, how do I do that? Well, this guy Lagrange, he was a great

mathematician. He was also a great mathematician early enough that he could do

some really trivial things and become famous for them. Just like Kraft that we were

talking about before. But, unlike Kraft, Lagrange really did a lot of other very

important things. And what Lagrange said was the following: Well, suppose I want to

minimize this sum. And I want to have this constraint added in. Sort of what I want to

do, then, is to minimize a weighted sum of this, which is what I'm interested in, and

this. In other words, if I minimize this weighted sum here of these two things, I'm

going to wind up with some sort of value for this. And some sort of value for this. By

changing lambda, then, which stands for Lagrange, he was also clever in making

himself famous that way, by changing lambda, I can change the balance between

how important these two things are. And as I change the balance between how

important they are, when I change it to just the right place, I'm going to have this

constraint here satisfied with equality. So that's the whole idea of Lagrange

minimization.

So we take this function. How do you now minimize a function of multiple variables?

9



Well, again it's a messy problem. But the first thing you can try to do is find a

stationary point. So, let's always do the easy thing first. We take the partial

derivative of this function here, with respect to l sub i. That's what we're trying to

minimize. And what we get is p sub i minus lambda times the natural log of 2, times

2 the minus l sub i.

I'm not very good at differentiation any more, so I only differentiate things which are

easy. And that's easy. I want to find a stationary point, so I set this equal to 0. That

makes the problem worse, because now I have a function of lambda and also all of

these l sub i's. But now I choose l sub i, so that I satisfy the constraint. Namely, I

choose lambda to satisfy this equation here. When I choose lambda to satisfy this

equation here, what I get is p sub i is equal to 2 to the minus l i, and therefore, l sub

i is equal to minus log p sub i. In other words, I have this equation here. What

happens when I sum this equation over i? Let's look at it.

We sum this over i. The sum of p i over i is 1 minus lambda times natural log of 2

times sum of 2 to the minus l sub i. And I want to make this equal to 1. So what I get

is 1 is equal to this times lambda natural log of 2. So, I hope that choosing lambda

equal to 1 over natural log of 2 is what I want to do. And when I do that, this

becomes 1 here. And I just have 2 to the minus lambda i is equal to 1. OK, good.

And then, going back to this equation, p sub i is equal to 2 to the minus l sub i. OK,

this is this arithmetic. I mean, if you don't follow what I'm doing, just look at it later

and you'll find that there's nothing really there.

So we wind up with these lengths being equal to the negative of the binary

logarithms of these probabilities. It's only a stationary point. We don't know whether

it's a minimum yet. And, unfortunately, we also have the problem of, they might not

be integers. But, anyway, what we wind up with, then, if we ignore looking at these

problems for the time being, is that the lengths are going to be equal to this. The

expected value of the lengths is then going to be equal to the sum, over i, of minus

p sub i times the logarithm of p sub i.

When Shannon saw this, and when various other people saw it, they said, gee, this

10



looks like the entropy of statistical mechanics. So let's call this quantity entropy. For

no better reason than that. And it would probably have been far better if they called

it something else. Because for years, there were physicists and philosophers trying

to figure out what the deep relationship was between statistical mechanical entropy

and information theoretic entropy. And there probably is such a relationship, but the

relationship is far more complicated than understanding information theory. And it's

far more complicated than understanding statistical mechanics. So I advise you to

not worry about that one until after you understand what it means in an information

theoretic sense.

So h of x is what we call the entropy of the random variable x. And it really is the

entropy associated with these logarithms of p sub i. So when you take functions of a

random variable, a random variable carries along a lot of baggage with it. Including

the probabilities of everything. And when you take the expected value of a random

variable, the individual values of the sample points of that random variable are

important. And the probabilities are important.

Here we have something even stranger. Because it's only the probabilities that have

anything to do with it. And this makes sense. We already said that these symbols

have nothing to do with this problem we're dealing with. You can call the symbols

whatever you want to call them. And, therefore, the only thing of any interest to us is

these probabilities that we're dealing with. So H of x is a function only of these

probabilities. It's the expected value of minus log p sub i. This is called entropy, and

in fact we will find out very shortly that it really is the minimum number of bits per

source symbol needed to represent the source. In other words, when we generalize

the problem from just plain ordinary garden-variety oh prefix-free codes, we will find

that this number is really what characterizes the whole problem for discrete

memory-less sources. So let's go on and say more about that.

Let's say something about bounds on the entropy. First, what's the relationship

between the entropy and this minimum of the expected length that we started to talk

about? And I claim that H of x is less than or equal to L min, which is less than the

entropy plus 1. And why is that?

11



We already have the machinery to see this. We almost have the machinery to see

this. Namely, we have solved this minimization problem. We've only found a

stationary point, but we've ignored the fact that we have an integer constraint. So, if

you allow me to say for the time being that, in fact, when we solve the problem

without worrying about integers, that it actually gives me a minimum, then in fact this

follows very easily. Because what I'm going to do is to find those optimal lengths,

which are non-integers. And then I can solve the prefix condition and get a code by

simply increasing each of those numbers to the next integer up. In other words, I

can take the ceiling function of each of those real numbers to get an integer. When I

take the ceiling function, 2 to the minus l sub i is going to go down. So the craft

inequality is still satisfied. So the entropy has to be less than or equal to this

average. Has to be less than H of x plus 1.

So the average is equal to H of x if and only if each these probabilities it an integer

power of 2 to start with. In other words, the solution I came up with before is that the

length I wanted should be equal to minus the logarithm to base 2, of p sub i. So if p

sub i is already a power of 2 then I'm home free. Because I just pick that length to

be minus log of p sub i, and it happens to be an integer. And I don't have to round it

up.

So if I let l1 to lM be these codeword lengths -- well, here's where I'm going to prove

this to you. And the proof is the following: I want to prove that H of x is less than or

equal to l min, which I'll just call here L bar. So H of x minus L bar is equal to, this is

the entropy. This is the expected length here. I can rewrite this as the sum of p sub i

times logarithm of 2 to the minus l sub i divided by p sub i. That's just arithmetic. l

sub i is equal to to logarithm of 2 to the l sub i, that's equal to minus the logarithm of

2 the minus l sub i. So I get this.

There's an inequality. Hate to call it an inequality, it's so trivial. Here's the point 1. If

you plot a natural log of x. And if you compare it with the function x minus 1, you can

see that natural log of x is less than or equal to x minus 1.

Now, this an inequality which happens to be very useful in information theory. I

12



would claim that any inequality that you can prove in information theory, by any

means at all, I can prove using this inequality and nothing else. And I've believed

that for 50 years and nobody's proven me wrong yet.

And also, this is something you can draw and remember. So it's simple. So the idea,

then, is since this sum log of 2 to the minus l over p sub i is less than or equal to the

natural log of 2 times the natural logarithm of this. You just, here we go. For any u

greater than 0, natural log of u is less than or equal to this. So the logarithm to the

base 2 of u is less than or equal to the logarithm to the base 2 of e, which is some

number, times u minus 1. With equality at u equals 1. So this is less than or equal to

this. And look how nice that is. The p sub i's cancel out and you get the sum over i,

of 2 the minus l i minus p sub i is less than or equal to 0. An equality occurs if, and

only if, p sub i is equal to 2 to the minus l i. OK?

So that's all there is to it. And that establishes that -- well, establishes part of this

theorem here. And the other part we already established, And if you don't believe

me, the notes do it more carefully.

Well, this left us a serious problem unknown. Which is, how do you actually solve

this integer minimization problem. How do you solve it if you have a big, long,

complicated source with lots of probabilities in it? And everybody thought it was

hopeless. Even Shannon thought it was hopeless. And Shannon sort of figured out

ways to approach this problem. He said, well, you want to have about half the

probability. Starting with 1, about half the probability starting with 0. So he would

divide up the symbols in the alphabet, so he could come as close is possible to half

of them being up here and half of them coming down here. And he would continue

to do that, I mean, I don't usually like to write on the blackboard, but he would start

out generating a code like this. And this would be approximately 1/2. This is

approximately 1/2. And then he would take these symbols. Split them, again, in

probability.

And everybody was starting the problem over here, and trying to generate a code

working their way out. Well, Dave Huffman was a graduate student at the time. and

13



he took Bob Fano's graduate course in information theory, I think a year or so later

than Kraft did. And Bob Fano assigned as a homework problem, how do you solve

this problem? Sneaky guy. And he was very amazed when Dave Hoffman came in

next day and said, oh, it's easy, you do it this way.

So the question is, how did he do it? Well, Huffman, instead of looking at the

problem from here out, looked at the problem from here in. He was -- I mean, this

was before there was anything called computer science. But he thought like a

computer scientist did. In other words, he thought algorithmically. And he also

thought in terms of discrete problems. And therefore, he looked for properties that

these optimum codes should have. And it was neat. So, he started out with a limit.

He said, an optimal code has to have the property that a p i is greater than p sub j.

Then the optimal length associated with p sub i, namely the optimal length of the i'th

codeword, had to be less than or equal to the length of the j'th codeword.

And you can see this by saying, well, suppose that's not true. Suppose that p i is

greater than p j. And also, li is greater than lj. And then you say, OK, take this

situation. We will interchange those two codewords in the code. And we'll look at

what that does to the average. And if you work that through, you find out that since

what you've done is, you've shortened the codeword associated with this and

lengthened the codeword associated with this. You have changed the average

length to make it smaller.

Now, let me warn you about something. When you start looking at these properties,

the most confusing thing is what happens when two probabilities are the same, or

when two lengths are the same. And I would advise you to just ignore that problem,

until you get an idea of what's going on. Namely, assume that all lengths are

different. All probabilities are different. And then it's easy to see what's going on.

And when you get all done, go back and straighten out the cases where things are

equal. And I think the notes do this carefully. If you read books on information

theory, about half of them do it carefully, and about half of them don't. So you

should be suspicious. But anyway, that's one of those trivialities that you just have to

sort out for yourself.

14



OK. The next lemma is optimal prefix-free codes are full. We talked about what a full

code is. When you draw this binary graph for it, you don't have any nodes in a

binary graph -- you don't have any leaves that are not associated with codewords.

Because if you do, we showed you that shortened the codeword of the part of the

tree on the other side of that leaf. In other words, if you have something here, if this

is a codeword and this is not a codeword, then you just get rid of this, and bring that

back here.

But this is a whole tree stemming off here, you do the same thing. You take this

whole tree and you bring it into there, and you throw this away. So, optimal prefix-

free codes are full. So far there's nothing to this.

The next part of it is the sibling of a codeword. And what's a sibling? Well, we used

to call it a brother. But then couldn't do that because we have to call it a brother or

sister. And that got to difficult. So people invented the word sibling, to talk about a

brother or a sister. So the sibling of a codeword for is the string form by changing

the last bit. In other words, in this family tree here, the sibling of this is this. The

sibling of this is this. The sibling of this is this. So, a leaf can have a sibling which is

an intermediate node, and vice versa.

So then he said, the sibling of a codeword is a string formed by changing the last

bit. I think he probably said the brother, but, anyway. For optimality, the sibling of

each maximum length codeword is another codeword. Now, that's a really simple

one. If I make this a codeword, and this is the maximal length codeword in this code

I'm talking about, this can't be an intermediate node because then there would have

to be longer codewords. And it can't be empty because these optimal codes are all

full. And therefore, this has to have a sibling which is also a codeword. So the

longest codewords have to have siblings.

Well, that's easy enough. Incidentally, one of the problems that you have in proving

this sort of thing is, what happens if you have zero-probability letters. Well, we just

get rid of that problem and say, well, there aren't any zero-probability letters.

Because if we want to come up with a sensible model for something, we're not

15



going to create a codeword for something that can't happen. So, there are no zero-

probability letters in this alphabet. I mean, if you want to put them in, it just

complicates the whole thing. And you can do it.

Then, finally, there's this lemma which says, there is an optimal prefix-free code in

which, after you order the probabilities of all of the messages, namely you order p1

to be greater than or equal to p2, greater than or equal to p sub m. In other words,

we just rename the letters in the alphabet, so that letter m is less likely than letter m

minus 1, and so forth. Back to 1. 1 is the most probable, m is the least likely.

Well, we've already concluded that we want to assign the longest messages to the

least probable codewords. And this says, take the two least probable codewords

and we can always make an optimal code in which those two codewords are

siblings. And the reason for that is, one of them is not going to be longer than the

other or else you can shorten the code by interchanging things.

So there is an optimal prefix-free code in which the codeword for m minus 1. And

the codeword for m are maximal length and they're siblings. So the Huffman

algorithm first combines these two. And then looks at the reduced tree with m minus

1 nodes. Let me show you an example of that.

So it starts out. Here, I've ordered the probabilities associated with a set of symbols.

The symbols are 1, 2, 3, 4, 5. The two least likely messages are 0.1 and 0.15.

Obviously, I could've interchanged these two if I want to. But why interchange them?

So I say, OK, the last digit on this one, I'm going to assign to be a 0. The last digit

on this, I'm going to assign to be a 1. And the important thing is, I'm going to make

them siblings in this tree. And what I'm going to do now, terribly complicated thing,

instead of building a tree from left to right, I'm going to build a tree from right to left.

So when I get all done with the tree it's going to come in like this. And what I'm

doing is starting out at the end, to start to build the end of the tree. And what

happens after I go through this first step is, I say, OK there is an optimal code. In

which these two quantities are siblings of maximal length. I now want to form an

optimal code for these probabilities here.

16



So, I go back and I iterate again. And I said, OK, if I have these probabilities here,

what's the optimal code. Well, I could reorder the things. But now I know that the

only thing I'm interested in is the two least likely symbols in this new alphabet here.

Which is 0.2 and 0.15. So I combine those together. I tie them together as siblings

in this last generation, however it works out.

So then I have an alphabet of size three. And then down here, I have these two

things tied together. These two things tied together. So I have a node of probability

0.25. I have a node of probability 0.35, and I have a node of probability 0.4. I take

the two least likely, and I tie them together. And then I have two nodes left, one with

probability 0.6 and one with probability 0.4. And I tie them together. And, presto, I

have my whole code, except for flipping it over, to go from left to right if you like.

Codes that go from left and right, instead of right to left.

OK. I have swindled you. How have I swindled you? I mean, I've swindled you a little

bit by talking about these things that might be equal or not equal. And that's not

important. You can sort that out on your own. There's a very important swindle I

pulled. And what's that? What's very incomplete in this argument? This part is fine.

Nothing wrong here. We have a lemma which says, you can find an optimal code by

tying these two things together. Yeah?

AUDIENCE: [UNINTELLIGIBLE] combine those two [UNINTELLIGIBLE] combination.

PROFESSOR: You're saying, how do I know to combine these two? OK, which means what? Yeah.

AUDIENCE: [UNINTELLIGIBLE] you've just added the probabilities --

PROFESSOR: I've just added those two probabilities. So I have a new ensemble where I have four

probabilities, 0.25, 0.15, 0.2, and 0.4. And that's fine. I still have these things. No,

there's no independence involved here at all. I mean, I started out with five letters.

Which are disjoined. I now have four letters that are disjoined. What have I done?

Yeah.

AUDIENCE: [UNINTELLIGIBLE]

17



PROFESSOR: Yes. Yeah. I have assumed, now, that once I get these four symbols, if I have those

four symbols, I can form an optimal code for those four symbols in which these two

symbols get tied together. But how do I know that an optimal code for this reduced

set of probabilities is also an optimal code for the original problem? I have tied these

two things together. I know there's an optimal code in which these two things are

tied together. I then have four symbols. I want to find a code for those four symbols.

But I assume that the optimal code for these four symbols, when I break apart these

two things, gives me an optimal code for five symbols.

That's the sort of thing I want you people to start catching onto immediately. I want

you to start asking those nasty questions. And those nasty questions are the things

that say, OK, how do I know that this works? In other words, you're not here to learn

these algorithms. I can tell you what the algorithm is in an instant. You can do the

algorithm. A computer can do the algorithm about three thousand times faster than

you can. And you can be replaced by a computer, if you only learn the algorithms.

You can program the algorithm. You can probably find the computer that can

program the algorithm too. And there's no need to program it more than once. So

that after you've done that, you are useless again. So the only thing that's

worthwhile for you is to be able to spot these problems and to understand what's

going on.

So. How do I know that this first optimization leads to the second optimization. After

combining these two least likely codewords, or siblings, we've gotten a reduced set

of probabilities. In this problem here, what we've done, the reduced set of

probabilities are 0.4, 0.2, 0.15, and 0.25. Why does finding the optimal code for this

reduced set result in an optimal code for the original set? That's really the question

that we're asking.

Well, it's not hard. If you take any code for the reduced set, let's call the reduced set

x prime, set of probabilities. Let the expected length of that be l prime. It's not

necessarily an optimal code, but it's any old code that I generate. Any old code I

generate for L prime, I can now take that code for l prime and I can expand it out to

a code for L. Namely, I have this code here this, this, this, and that's the expanded -

18



- and now I can expand it into a code for the original set, by adding on this and this,

as leaves on this. This leaf here then becomes an intermediate node. And I add two

extra leaves to it. OK, well, it's not hard.

The expected length for this code, for these five letters, I claim, is equal to the

expected length for this reduced code, this, this, this, and this. Plus one extra digit

for this. Plus one extra digit for this. So the expected length for L is the expected

length for L prime plus 0.15 plus 0.1. Which says the following: if I want to minimize

this, and I know that this has to be equal to this, and these two numbers are fixed, I

can't change them. I can minimize this, by minimizing this. And that's the final step

in the whole argument.

And what's peculiar is that everybody learns the Huffman algorithm. And what

Huffman did, which was really very smart, was to sort out this issue. And I can teach

this to a hundred classes, and nobody will ever point out to me that there's a logical

flaw in the whole argument. And you can look at most books on information theory

and they never point out that there's that logical flaw there, either.

So, anyway, that's the end of Huffman's algorithm. You can see when you look at

this that this is really an extraordinarily easy thing to do. I mean, you can take an

alphabet of several thousand symbols. All you have to do is order them. Tie the

least two likely together. Assign a 1 and a 0 to them. Then, stick that into an ordered

list again. Take the two least probable. Tie them together. Stick it into an ordered list

again. And, if you have some minimal knowledge of data structures, you can do this

with essentially on the order of one operation for each letter in this alphabet. So it

really isn't a very difficult sum.

So here's an integer problem which is really easy to solve. And the way to solve it is

to look at the problem in the opposite way from what everybody else has looked at it

in. Does this say you want to ignore everything that everybody else has done, and

go your own way? Not quite. But it says that's one of the things you ought to try, if

you find that everybody is doing something one way and you can find another way

to look at, that's very rich. It might turn out to be nothing but it might turn out to be

19



something very worthwhile.

Let's now talk about this quantity, entropy. And for every chance variable, x, if that

chance variable, x, is discrete and has a finite number of elements in it, so I'm

talking about a chance variable x, what's a chance variable have tagging along after

it? It has a set of n probabilities tagging along after it. That's what a chance variable

is. A chance variable is not just the alphabet. A chance variable is the alphabet plus

the probabilities. That's why you then talk about it having an entropy. And the

entropy is the expected value of, minus the logarithm, of this PMF function. So, in

fact, this is an unusual statistic in the sense that it has nothing to do with the symbol

values, and everything to do with just the probabilities of the symbol values. And as

we go on, you'll see that in fact this is a very important property of it. And dealing

with the logarithms of these symbol values is, in fact, a much more worthwhile thing

to do than dealing with the probabilities of the symbols.

Now, let me pause again and see if anybody can have any idea of why logarithms of

probabilities might be more significant than probabilities. And think of what we're

going to be doing here. We're taking a sequence of letters. When I take a sequence

of letters, what's the probability of the sequence of letters? If they're IID. Namely,

we're looking --

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: It's the product of those probabilities. Now, if you agree with me that the probability

theory is concerned 50% with the law of large numbers and 50% with everything

else all put together, why is the logarithm of a probability important?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: You change your product to a sum, yes. If you have a product of probabilities, you

can talk about a sum of the logarithms of probabilities. That's why entropy is

important in statistical mechanics. It also is, fundamentally, the reason why entropy

is important in information theory. Is because what you're almost always interested

in is a product of probabilities. And when you're interested in a product of

20



probabilities and you want to use the law of large numbers, you turn that product of

probabilities into a sum of the logarithms of probabilities. Fundamental idea.

Shannon took eight years sorting all this out. And Shannon was by far the smartest

person I've ever met. I mean, the problems that we worry about, he just, bip. Solves

it with no effort at all. This one took them a while to sort out. It also took him a while

to sort out the fact that once he sorted this out, he could sort out all of the other

problems. As far as communications was concerned. So was quite important.

I mean, I can tell you one of the peculiar things about Shannon. Just from the first

time I ever talked to him about a technical problem. I'd just become a faculty

member here. And his office was about five doors down from mine. And one day I

screwed up my courage to go down and talk to the guy about a problem I was

working on. And I thought it was a really neat problem. It had all sorts of pieces to it,

all sorts of bells and whistles on it. And I started to explain it to him. And he said,

well, can we look at a slightly simpler case where you throw out this part of it, you

throw out one bell. Then he'd throw out a whistle. Then he'd throw out a bell. And I

was going along with this and saying, yeah, I guess we could. We could. We can

throw out all of these things without really losing the essence of the problem.

And, finally, I started to get discouraged. Because this really neat research problem,

this really important research problem, was turning a toy problem which was almost

trivial. It had nothing to do, it seemed, with anything. And finally we got down to a

certain point. And I said, yeah, but this is trivial, the solution is this. And he said,

yeah. And then we started putting back all the pieces. And his genius was, he knew

which things to throw out. So that each of the things we threw out, we could put

them back in again. When we got done, the research problem was trivial. And his

genius was in finding the right trivial example to look at. So, in fact, what you always

want to look at, in the communications field -- and in most fields, I think -- is finding

the really simple way of looking at something. Which means you have to throw out

most of the nonsense.

So, in this case, it's looking at entropy, which is the logarithm of a probability

assignment. And you want to look at that because the logarithm of a probability

21



assignment lets you add the logarithms of probabilities. Use the law of large

numbers. And then you can talk about sequences of elements.

Properties of entropy. For a discrete random chance variable. We have m elements

in the alphabet. First thing is that the entropy is always greater than or equal to 0.

Why is that? I'll let you figure it out. Why is the logarithm of a problem, minus the

logarithm of a probability, greater than or equal to 0? Why is it non-negative? Yeah.

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: Probabilities are always less than or equal to 1, yes. So this quantity here is always

greater than or equal to 0. Because the logarithm of 1 is equal to 0. We have a

quality here if x is deterministic. Which is just a special case there. Where you have

an ensemble of one element and it has probability 1. Or, in fact, at this point you

could add in things which have zero probability. Well, that's a little bit tricky. Because

you add in something that's zero probability. And the logarithm of 0 is infinity. So

you're dealing with the expected value of a bunch of infinities, which each occur with

zero probability. And you're forced to say, well, I think that 0 times log of 0 is equal

to 0. And in fact, epsilon times log of episilon goes to 0 as epsilon goes to 0. But you

save yourself a lot of worry by just leaving out things of zero probability.

So H of x is greater than or equal to 0. We have equality if x is deterministic. H of x

is less than or equal to log of m. The quality, if x is equiprobable. And how do I know

that? I look at this again. I'm not going to prove it here but, essentially, this follows

from saying that the natural logarithm of something is less than or equal to that

something minus 1. And you take the difference of the entropy, and log of m. And,

presto, it gives you the result that you want.

So you've got the most entropy, if everything is equiprobable. For any code

satisfying the Kraft inequality, the entropy is less than or equal to L bar. Well, that's

what we already proved. Mainly in the middle of the lecture, we showed that for any

code to satisfied the Kraft inequality, the entropy was always less than or equal to L

bar, because the entropy is what you get if you minimize the expected length

without the integer constraint. And L bar is what you get -- well, L bar min is what

22



you get when you minimize it with the integer constraint. I mean, you don't bother

about minimizing it. You get something bigger than L min. So this is less than or

equal to the length of any codeword.

For the very best codeword, for the very best code, the expected value of the

minimum is less than or equal to the entropy plus y. And you get that just by adding

to each non-integer length the ceiling function. Which gives you, at most, one extra

digit for each codeword. Now, here's the more interesting one. For independent

chance variables, x and y, here's where the nice part about notation comes along.

What's the entropy of x y? Well, what do I mean by x y first? I have a chance

variable, x. And this chance variable x has an alphabet associated with it. x1 up to x

sub m. I have a chance variable y. It has an alphabet associated with it. What's the

sample space, what's the set of events corresponding to the chance variable x y?

By x y, I mean a chance variable whose elements are the possible values of both x

and y.

So, I'm talking about the joint ensemble of x and y. I have a bunch of possible

values for that. And those possible values, if I have m possibilities for each, I have m

squared possible values for the two of them. So I'm talking about the expected

value of minus the logarithm of the probability of x and y. In other words, I am trying

to take the -- let me write it out. I'm probably given conniptions to -- no? OK.

I want to take p of x y of symbol x y, times minus the logarithm to the base 2 of p

sub x y of x y. That's what this means if I write it out.

Well, this probability here is p sub x of little x, times p sub y of little y. Why is that?

Because I'm assuming that they're independent of each other. And, therefore, the

probability of two of them is the product of the probabilities, times minus log to the

base 2. So if p sub x of x minus logarithm to the base 2 of p sub y of y. And I'm

summing this over all x and all y.

And the more sophisticated way to write this -- things I say in lecture, you don't have

to copy down because they're always in the notes. If they're not in the notes, it's

probably wrong anyway, so. So this expected value is expected value of the

23



logarithm of the probability of x y. Which is the expected value of the logarithm of p

of x times p of y. And, since I have a logarithm of a product, that's the expected

value of minus log p of x minus log p of y, which is the entropy of x plus the entropy

of y. In other words, when I have a joint ensemble of even more independent

quantities, The entropy the sequence is equal to the sum of the entropies of the

individual elements in that sequence.

Well, that's all I wanted to talk about today. If any of you have any questions to ask,

you should ask them now. I went through Huffman coding pretty quickly, because

it's something where you have to do some exercises on it to sort it out. And I didn't

want to do any more than that.

24


