MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.641 - Electromagnetic Fields, Forces, and Motion	Spring 2005
Problem Set 11 - Solutions	
Prof. Markus Zahn	MIT OpenCourseWare

Problem 11.1

A
The given equations follow by writing out Maxwell's equations and assuming \bar{E} and \bar{H} have the given directions and dependences.

B

The force equation for an incremental volume element is

$$
\bar{F}=\bar{i}_{x} m n_{e} \frac{\partial v_{x}}{\partial t}
$$

where \bar{F} is the force density due to electrical forces on the electrons

$$
\bar{F}=-\bar{i}_{x} e n_{e} E_{x}
$$

Thus,

$$
\begin{equation*}
-e n_{e} E_{x}=m n_{e} \frac{\partial v_{x}}{\partial t} \tag{1}
\end{equation*}
$$

C

As the electrons move, they give rise to the current density

$$
\begin{equation*}
J_{x} \approx-e n_{e} v_{x} \quad \text { (linearized) } \tag{2}
\end{equation*}
$$

D
Assume $e^{j(\omega t-k x)}$ dependence and (1) and (2) require

$$
\begin{aligned}
& \hat{J}_{x}=-j \frac{e^{2} n_{e}}{\omega m} \hat{E}_{x} \\
& =-j \omega \varepsilon_{0}\left[\frac{\omega_{p}^{2}}{\omega^{2}}\right] \hat{E}_{x}
\end{aligned}
$$

where $\omega_{p}=\sqrt{\frac{e^{2} n_{e}}{m \varepsilon_{0}}}$ is called the plasma frequency. (See page 600 in Woodson and Melcher, Electromechanical Dynamics, vol. 2). Combining this with Maxwell's equations:

$$
k^{2}=\frac{\omega^{2}}{c^{2}}\left[1-\frac{\omega_{p}^{2}}{\omega^{2}}\right] ; \quad c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}
$$

E

We have a dispersion which yields evanescent waves below the plasma (cutoff) frequency. Below this frequency, the electrons respond to the electric field associated with the wave in such a way as to reflect rather than transmit an incident electromagnetic wave.

F

Waves impinging on a boundary between free space and plasma will be totally reflected if the wave frequency $\omega<\omega_{p}$. The plasma frequency for the ionosphere is typically $f_{p} \approx 10 \mathrm{MHz}$. This result explains why AM broadcasts ($500 \mathrm{kHz}<f<1500 \mathrm{kHz}$) can commonly be monitored all over the world, whereas FM ($88 \mathrm{MHz}<f<108 \mathrm{MHz}$) has a range limited to "line-of-sight."

Problem 11.2

A

The equation of motion for the string is

$$
\begin{equation*}
m \frac{\partial^{2} \xi}{\partial t^{2}}=f \frac{\partial^{2} \xi}{\partial x^{2}}+S-m g \tag{3}
\end{equation*}
$$

where, for small deflections ξ in the " $\frac{1}{r}$ " field from Q,

$$
S \approx \frac{q Q}{2 \pi \varepsilon_{0} d}\left[1+\frac{\xi}{d}\right]
$$

In static equilibrium, $\xi=0$ and from (3)

$$
\begin{equation*}
q Q=2 \pi d \varepsilon_{0} \cdot m g \tag{4}
\end{equation*}
$$

B

The perturbation equation of motion remains

$$
\begin{equation*}
m \frac{\partial^{2} \xi}{\partial t^{2}}=f \frac{\partial^{2} \xi}{\partial x^{2}}+\left(\frac{q Q}{2 \pi d^{2} \varepsilon_{0}}\right) \xi \tag{5}
\end{equation*}
$$

Assume $e^{j(\omega t-k x)}$ dependence and (5) requires $\left(v_{s}=\sqrt{\frac{f}{m}}\right)$

$$
\omega^{2}=v_{s}^{2} k^{2}-\frac{q Q}{2 \pi d^{2} \varepsilon_{0} m}
$$

or from (4),

$$
\omega^{2}=v_{s}^{2} k^{2}-\frac{g}{d}
$$

The boundary conditions require $k=\frac{n \pi}{l}$, and for stability the mot critical mode is $n=1$; thus

$$
\begin{aligned}
& v_{s}^{2}\left(\frac{\pi}{l}\right)^{2}>\frac{g}{d} \\
& m<\frac{f d}{g}\left(\frac{\pi}{l}\right)^{2}
\end{aligned}
$$

C

Increase f, d, or decrease l.

Problem 11.3

A

This problem is very similar to that of problem 10.7. Using the same reasoning as in that problem, we obtain

$$
\begin{aligned}
& \sigma_{m} \frac{\partial^{2} \xi_{1}}{\partial t^{2}}=S \frac{\partial^{2} \xi_{1}}{\partial x^{2}}+\frac{\varepsilon_{0} V_{0}^{2}}{d^{3}}\left(2 \xi_{1}-\xi_{2}\right) \\
& \sigma_{m} \frac{\partial^{2} \xi_{2}}{\partial t^{2}}=S \frac{\partial^{2} \xi_{2}}{\partial x^{2}}+\frac{\varepsilon_{0} V_{0}^{2}}{d^{3}}\left(2 \xi_{2}-\xi_{1}\right)
\end{aligned}
$$

B
Assuming sinusoidal solutions in time and space, the dispersion relation is

$$
-\sigma_{m} \omega^{2}+S k^{2}-\frac{2 \varepsilon_{0} V_{0}^{2}}{d^{3}}= \pm \frac{\varepsilon_{0} V_{0}^{2}}{d^{3}}
$$

We have a dispersion relation that factors into two parts. The odd mode, $\xi_{1}=-\xi_{2}$ has the dispersion relation

$$
\omega=\left[\frac{S k^{2}}{\sigma_{m}}-\frac{3 \varepsilon_{0} V_{0}^{2}}{\sigma_{m} d^{3}}\right]^{\frac{1}{2}}
$$

The even mode, $\xi_{1}=\xi_{2}$ has the dispersion relation

$$
\omega=\left[\frac{S k^{2}}{\sigma_{m}}-\frac{\varepsilon_{0} V_{0}^{2}}{\sigma_{m} d^{3}}\right]^{\frac{1}{2}}
$$

C

A plot of the dispersion relation appears in Figure 1.

D

The lowest allowed value of k is $k=\frac{\pi}{L}$ since the membranes are fixed at $x=0$ and $x=L$. Therefore the first mode to go unstable is the odd mode. This happens as

$$
\left(\frac{3 \varepsilon_{0} V_{0}^{2}}{S d^{3}}\right)=\frac{\pi^{2}}{L^{2}}
$$

or

$$
V_{0}=\left|\frac{\pi^{2}}{L^{2}} \frac{S d^{3}}{\varepsilon_{0} 3}\right|^{\frac{1}{2}}
$$

Problem 11.4

We may take the results of Prob. 10.13, replacing $\frac{\partial}{\partial t}$ by $\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}$ and replacing ω by $\omega-k U$.

Figure 1: Plot of the dispersion relation for two membranes. (Image by MIT OpenCourseWare.)

A
The equations of motion are

$$
\begin{equation*}
\sigma_{m}\left(\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}\right)^{2} \xi_{1}=S \frac{\partial^{2} \xi_{1}}{\partial x^{2}}+\frac{\varepsilon_{0} V_{0}^{2}}{d^{3}}\left(2 \xi_{1}-\xi_{2}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{m}\left(\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}\right) \xi_{2}=S \frac{\partial^{2} \xi_{2}}{\partial x^{2}}+\frac{\varepsilon_{0} V_{0}^{2}}{d^{3}}\left(2 \xi_{2}-\xi_{1}\right) \tag{7}
\end{equation*}
$$

B
The dispersion relation is biquadratic, and factors into

$$
\begin{equation*}
-\sigma_{m}(\omega-k U)^{2}+S k^{2}-\frac{2 \varepsilon_{0} V_{0}^{2}}{d^{3}}= \pm \frac{\varepsilon_{0} V_{0}^{2}}{d^{3}} \tag{8}
\end{equation*}
$$

The (\pm) signs correspond to the cases $\xi_{1}=-\xi_{2}$ and $\xi_{1}=\xi_{2}$ respectively, as will be seen in part (d).

C

The dispersion relations are plotted in figures (2) and (3) for $U>\sqrt{\frac{S}{\sigma_{m}}}$.
D
Let $\xi_{1}=\xi_{2}$. Then (6) and (7) become

$$
\sigma_{m}\left(\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}\right)^{2} \xi_{1}=S \frac{\partial^{2} \xi_{1}}{\partial x^{2}}+\frac{\varepsilon_{0} V_{0}^{2}}{d^{3}} \xi_{1}
$$

Figure 2: Plot of the dispersion relation for odd motions $\left(\xi_{1}=-\xi_{2}\right)$. (Image by MIT OpenCourseWare.)

Figure 3: Plot of the dispersion relation for even motions $\left(\xi_{1}=\xi_{2}\right)$. (Image by MIT OpenCourseWare.)
and

$$
\sigma_{m}\left(\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}\right)^{2} \xi_{2}=S \frac{\partial^{2} \xi_{2}}{\partial x^{2}}+\frac{\varepsilon_{0} V_{0}^{2}}{d^{3}} \xi_{2}
$$

These equations are identical for $\xi_{1}=-\xi_{2}$; the dispersion equation is (8) with the + sign.

E

$$
\begin{aligned}
& \xi_{1}(0, t)=\operatorname{Re} \hat{\xi} e^{j \omega t}=-\xi_{2}(0, t) \\
& \frac{\partial \xi_{1}}{\partial x}=\frac{\partial \xi_{2}}{\partial x}=0 \text { at } x=0
\end{aligned}
$$

The odd mode is excited. Hence, we use the + sign in (8)

$$
\begin{aligned}
& -\sigma_{m}(\omega-k U)^{2}+S k^{2}-\frac{3 \varepsilon_{0} V_{0}^{2}}{d^{3}}=0 \\
& k^{2}\left(S-\sigma_{m} U^{2}\right)+2 \sigma_{m} \omega k U-\sigma_{m} \omega^{2}-\frac{3 \varepsilon_{0} V_{0}^{2}}{d^{3}}=0
\end{aligned}
$$

Solving for k, we obtain

$$
k_{ \pm}=\alpha \pm \beta
$$

where $\alpha=\frac{\omega U}{U^{2}-v_{s}^{2}}$

$$
\beta=\frac{\left[\omega^{2} v_{s}^{2}-\frac{3 \varepsilon_{0} V_{0}^{2}\left(U^{2}-v_{s}^{2}\right)}{\sigma_{m} d^{3}}\right]^{\frac{1}{2}}}{U^{2}-v_{s}^{2}}
$$

with $v_{s}^{2}=\frac{S}{\sigma_{m}}$.
Therefore

$$
\xi_{1}=\operatorname{Re}\left\{\left[A e^{-j(\alpha+\beta) x}+B e^{-j(\alpha-\beta) x}\right] e^{j \omega t}\right\}
$$

Applying the boundary conditions, we obtain

$$
\begin{aligned}
& A=\hat{\xi} \frac{(\beta-\alpha)}{2 \beta} \\
& B=\frac{(\alpha+\beta) \hat{\xi}}{2 \beta}
\end{aligned}
$$

Therefore, if $\hat{\xi}$ is real

$$
\xi_{1}(x, t)=-\xi_{2}(x, t)=\hat{\xi} \cos \beta x \cos (\omega t-\alpha x)-\frac{\alpha}{\beta} \hat{\xi} \sin \beta x \sin (\omega t-\alpha x)
$$

F
We can see that β can be imaginary, for which we will have spatially growing curves. This can happen when

$$
\omega^{2} v_{s}^{2}-\frac{3 \varepsilon_{0} V_{0}^{2}}{\sigma_{m} d^{3}}\left(U^{2}-v_{s}^{2}\right)<0
$$

or

$$
\begin{equation*}
V_{0}^{2}>\frac{\sigma_{m} d^{3} \omega^{2} v_{s}^{2}}{3 \varepsilon_{0}\left(U^{2}-v_{s}^{2}\right)} \tag{9}
\end{equation*}
$$

G
With $V_{0}=0$ and $v>v_{s}:($ see Figure 4)
Amplifying waves are obtained as (9) is satisfied (see Figure 5)

Figure 4: ξ_{1} and ξ_{2} with $V_{0}=0$ and $v>v_{s}$. (Image by MIT OpenCourseWare.)

Figure 5: Amplifying waves. (Image by MIT OpenCourseWare.)

Problem 11.5

A
The equation of motion is

$$
\begin{equation*}
\sigma_{m}\left(\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}\right)^{2} \xi=S \frac{\partial^{2} \xi}{\partial x^{2}}-\sigma_{m} g+T \tag{10}
\end{equation*}
$$

with $T=\frac{\varepsilon_{0}}{2} \frac{V_{0}^{2}}{(d-\xi)^{2}} \approx \frac{\varepsilon_{0}}{2} V_{0}^{2}\left[\frac{1}{d^{2}}+\frac{2 \xi}{d^{3}}\right]$.

For equilibrium, $\xi=0$ and from (10)

$$
\frac{\varepsilon_{0} V_{0}^{2}}{2 d^{2}}=\sigma_{m} g
$$

or

$$
V_{0}=\left[\frac{2 \sigma_{m} g d^{2}}{\varepsilon_{0}}\right]^{\frac{1}{2}}
$$

B

With solutions of the form $e^{j(\omega t-k x)}$ the dispersion relation is

$$
(\omega-k U)^{2}=\frac{S}{\sigma_{m}} k^{2}-\frac{\varepsilon_{0} V_{0}^{2}}{\sigma_{m} d^{3}}
$$

Solving for k, we obtain

$$
k=\frac{\omega U \pm \sqrt{\frac{S}{\sigma_{m}} \omega^{2}-\left(U^{2}-\frac{S}{\sigma_{m}}\right)\left(\frac{\varepsilon_{0} V_{0}^{2}}{\sigma_{m} d^{3}}\right)}}{\left(U^{2}-\frac{S}{\sigma_{m}}\right)}
$$

For $U>\sqrt{\frac{S}{\sigma_{m}}}$, and not to have spatially growing waves

$$
\frac{S}{\sigma_{m}} \omega^{2}-\left(U^{2}-\frac{S}{\sigma_{m}}\right)\left(\frac{\varepsilon_{0} V_{0}^{2}}{\sigma_{m} d^{3}}\right)>0
$$

or

$$
\omega^{2}>\left[\left(U^{2}-\frac{S}{\sigma_{m}}\right) \frac{\varepsilon_{0} V_{0}^{2}}{S d^{3}}\right]
$$

