Department of Electrical Engineering and Computer Science

6.013 Electromagnetics and Applications

Quiz 1, 10/16/03
6.013 Formula sheet attached. You are also allowed to use a formula sheet on both sides of a $81 / 2^{\prime \prime} \times 11$ " paper that you prepare.

Problem 1 (30 Points)

A uniformly distributed line charge in free space with constant density λ coulombs/meter is bent into the shape of a square with sides of length $2 a$. The square shaped line charge is centered around the origin in the $z=0$ plane.
a) What is the approximate electric scalar potential and approximate electric field far from the line charge so that $r \gg 2 a$? Hint: No major computation is necessary for this part.
b) What is the electric scalar potential for any point P on the z axis?

Hint: One or more of the following indefinite integrals may be useful:

$$
\begin{aligned}
& \int \frac{d x}{\left[x^{2}+c^{2}\right]^{1 / 2}}=\ln \left[x+\sqrt{x^{2}+c^{2}}\right], \quad \int \frac{d x}{\left[x^{2}+c^{2}\right]}=\frac{1}{c} \tan ^{-1}\left(\frac{x}{c}\right) \\
& \int \frac{d x}{\left[x^{2}+c^{2}\right]^{3 / 2}}=\frac{x}{c^{2} \sqrt{x^{2}+c^{2}}}, \quad \int \frac{x d x}{\left[x^{2}+c^{2}\right]^{3 / 2}}=\frac{-1}{\sqrt{x^{2}+c^{2}}}
\end{aligned}
$$

Problem 2 (30 points)

Parallel plate electrodes with spacing d and area A enclose a lossless dielectric with space varying dielectric permittivity

$$
\varepsilon(x)=\varepsilon_{0} e^{\alpha x}
$$

A voltage source, $v(t)$, is imposed across the electrodes. The lossless dielectric has no free volume charge density, $\rho_{f}=0$, so that Gauss' law for this problem reduces to

$$
\nabla \cdot \bar{D}=\nabla \cdot[\varepsilon(x) \bar{E}]=0
$$

a) Find the electric field in the dielectric. Neglect fringing field effects so that the electric field can only be x directed and is only a function of x and $\mathrm{t}, \bar{E}=E_{x}(x, t) \bar{i}_{x}$.
b) What are the free surface charge densities at each of the electrodes, $\sigma_{s}(x=0, t)$ and $\sigma_{s}(x=d, t) ?$
c) What is the capacitance?

Basic Equations of Electrodynamics

Mathematical Identities

$v(t)=R_{e}\left\{\underline{V} e^{j \omega t}\right\}$ where $\underline{V}=|V| e^{j \phi}$

$$
\begin{gathered}
\nabla=\hat{x} \partial / \partial \mathrm{x}+\hat{y} \partial / \partial \mathrm{y}+\hat{\mathrm{z}} \partial / \partial \mathrm{z} \\
\overline{\mathrm{~A}} \bullet \overline{\mathrm{~B}}=\mathrm{A}_{\mathrm{x}} \mathrm{~B}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathrm{~B}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}} \mathrm{~B}_{\mathrm{z}} \\
\nabla^{2} \phi=\left(\partial^{2} / \partial \mathrm{x}^{2}+\partial^{2} / \partial \mathrm{y}^{2}+\partial^{2} / \partial \mathrm{z}^{2}\right) \phi
\end{gathered}
$$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\nabla \cdot(\nabla \times \underline{\bar{A}})=0
$$

$$
\nabla \times(\nabla \times \overline{\mathrm{A}})=\nabla(\nabla \cdot \overline{\mathrm{A}})-\nabla^{2} \overline{\mathrm{~A}}
$$

$$
\left.\int_{\mathrm{V}(\nabla)} \cdot \overline{\overline{\mathrm{G}}}\right) \mathrm{dv}=\int_{\mathrm{A}} \overline{\mathrm{G}} \bullet \mathrm{~d} \overline{\mathrm{a}}
$$

$$
\int_{\mathrm{A}}(\nabla \times \overline{\mathrm{G}}) \bullet \mathrm{d} \overline{\mathrm{a}}=\oint_{\mathrm{c}} \overline{\mathrm{G}} \bullet \mathrm{~d} \overline{\mathrm{~s}}
$$

$$
\mathrm{e}^{\mathrm{j} \omega \mathrm{t}}=\cos \omega \mathrm{t}+\mathrm{j} \sin \omega \mathrm{t}
$$

$\left(\nabla^{2}-\mu \varepsilon \partial^{2} / \partial t^{2}\right) \overline{\mathrm{E}}=0$ [Wave Eq.]

$$
\cos \alpha+\cos \beta=2 \cos [(\alpha+\beta) / 2] \cos [(\alpha-\beta) / 2]
$$

$$
\left(\nabla^{2}+\mathrm{k}^{2}\right) \underline{\overline{\mathrm{E}}}=0, \underline{\bar{E}}=\underline{\bar{E}}_{o} e^{-j \overline{\mathrm{k}} \cdot \bar{r}}
$$

$$
\underline{\mathrm{H}}(\mathrm{f})=\int_{-\infty}+\infty \mathrm{h}(\mathrm{t}) \mathrm{e}^{-\mathrm{j} \omega \mathrm{t}} \mathrm{dt}
$$

$$
\mathrm{e}^{\mathrm{x}}=1+\mathrm{x}+\mathrm{x}^{2} / 2!+\mathrm{x}^{3} / 3!+\ldots
$$

$$
\begin{aligned}
& \overline{\mathrm{E}}_{1 / /}-\overline{\mathrm{E}}_{2 / /}=0 \\
& \overline{\mathrm{H}}_{1 / /}-\overline{\mathrm{H}}_{2 / /}=\hat{n} \times \overline{\mathrm{K}}_{\mathrm{s}}
\end{aligned}
$$

$$
\mathrm{k}=\omega(\mu \varepsilon)^{0.5}=\omega / \mathrm{c}=2 \pi / \lambda
$$

$$
\sin \alpha=\left(e^{j \alpha}-e^{-j \alpha}\right) / 2 j
$$

$$
\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}=\mathrm{k}_{0}^{2}=\omega^{2} \mu \varepsilon
$$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{x}}=\omega / \mathrm{ky}, \quad \mathrm{v}_{\mathrm{g}}=(\partial \mathrm{k} / \partial \omega)^{-1} \\
& \mathrm{v}_{\mathrm{p}}
\end{aligned}
$$

$$
\cos \alpha=\left(\mathrm{e}^{\mathrm{j} \alpha}+\mathrm{e}^{-\mathrm{j} \alpha}\right) / 2
$$

Planar Interfaces

$$
\overline{\mathrm{B}}_{1 \perp}-\overline{\mathrm{B}}_{2 \perp}=0 \quad \mathrm{E}_{\mathrm{y}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{+}(\mathrm{z}-\mathrm{ct})+\mathrm{E}(\mathrm{z}+\mathrm{ct})=\mathrm{R}_{\mathrm{e}}\left\{\mathrm{E}_{y}(\mathrm{z}) \mathrm{e}^{\mathrm{j} \omega t}\right\}
$$

$\theta_{\mathrm{r}}=\theta_{\mathrm{i}}$

$$
\overline{\mathrm{D}}_{1 \perp}-\overline{\mathrm{D}}_{2 \perp}=\rho_{\mathrm{s}} \quad \mathrm{H}_{\mathrm{x}}(\mathrm{z}, \mathrm{t})=\eta_{0}^{-1}\left[\mathrm{E}_{ \pm}(\mathrm{z}-\mathrm{ct})-\mathrm{E}-(\mathrm{z}+\mathrm{ct})\right][\text { or }(\omega \mathrm{t}-\mathrm{kz}) \text { or }(\mathrm{t}-\mathrm{z} / \mathrm{c})]
$$

$0=\downharpoonleft$ if $\sigma=\infty \quad \int_{\mathrm{A}}(\overline{\mathrm{E}} \times \overline{\mathrm{H}}) \bullet \frac{\mathrm{d}}{\overline{\mathrm{a}}}+(\mathrm{d} / \mathrm{dt}) \int_{\mathrm{V}}\left(\varepsilon|\overline{\mathrm{E}}|^{2} / 2+\mu|\overline{\mathrm{H}}|^{2} / 2\right) \mathrm{dv}$
$\sin \theta_{\mathrm{t}} / \sin \theta_{\mathrm{i}}=\mathrm{k}_{\mathrm{i}} / \mathrm{k}_{\mathrm{t}}=\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{t}}$
$\theta_{c}=\sin ^{-1}\left(n_{t} / n_{i}\right)$

Maxwell's Equations, Force
$\nabla \times \overline{\mathrm{E}}=-\partial \overline{\mathrm{B}} / \partial \mathrm{t} \square$
$\oint_{\mathrm{c}} \overline{\mathrm{E}} \bullet \mathrm{d} \overline{\mathrm{s}}=-\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{A}} \overline{\mathrm{B}} \bullet \mathrm{d} \overline{\mathrm{a}}$
$\nabla \times \overline{\mathrm{H}}=\overline{\mathrm{J}}+\partial \overline{\mathrm{D}} / \partial \mathrm{t}-$
$\oint_{\mathrm{c}} \overline{\mathrm{H}} \bullet \mathrm{ds}=\int_{\mathrm{A}} \overline{\mathrm{J}} \bullet \mathrm{d} \overline{\mathrm{a}}+\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{A}} \overline{\mathrm{D}} \bullet \mathrm{d} \overline{\mathrm{a}}$
$\nabla \bullet \overline{\mathrm{D}}=\rho \rightarrow \int_{\mathrm{A}} \overline{\mathrm{D}} \bullet \mathrm{d} \overline{\mathrm{a}}=\int_{V} \rho d v$
$\nabla \cdot \overline{\mathrm{B}}=0 \rightarrow \int_{\mathrm{A}} \overline{\mathrm{B}} \bullet \mathrm{d} \overline{\mathrm{a}}=0$
$\nabla \bullet \overline{\mathrm{J}}=-\partial \rho / \partial \mathrm{t}$
$\overline{\mathrm{f}}=\mathrm{q}\left(\overline{\mathrm{E}}+\overline{\mathrm{v}} \times \mu_{\mathrm{o}} \overline{\mathrm{H}}\right)[\mathrm{N}]$

Waves

Constants

$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
$\mathrm{c}=\left(\varepsilon_{o} \mu_{\mathrm{o}}\right)^{-0.5} \cong 3 \times 10^{8} \mathrm{~ms}^{-1}$
$\mathrm{h}=6.624 \times 10^{-34} \mathrm{Js}$
$e=-1.60 \times 10^{-19} \mathrm{C}$
$\mathrm{k}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
$\eta_{\mathrm{o}} \cong 377 \mathrm{ohms}=\left(\mu_{\mathrm{o}} / \varepsilon_{0}\right)^{0.5}$
$\mathrm{m}_{\mathrm{e}}=9.1066 \times 10^{-31} \mathrm{~kg}$

$$
\varepsilon_{\mathrm{eff}}=\varepsilon_{0}(1-\mathrm{j} \sigma / \omega \varepsilon)
$$

$\theta>\theta_{\mathrm{c}} \Rightarrow \overline{\mathrm{E}}_{t}=\overline{\mathrm{E}}_{i} \underline{\mathrm{~T}} e^{+\alpha x-j k_{z} z} \quad \overline{\mathrm{E}}=-\nabla \phi-\partial \overline{\mathrm{A}} / \partial \mathrm{t}, \overline{\mathrm{B}}=\nabla \times \overline{\mathrm{A}}$
$\overline{\mathrm{k}}=\overline{\mathrm{k}^{\prime}}-\mathrm{j} \overline{\mathrm{k}}{ }^{\prime \prime}$
$\underline{\phi}(\mathrm{r})=\int_{\mathrm{V}}\left(\underline{\rho}(\overline{\mathrm{r}}) \mathrm{e}^{-\mathrm{jk} \mid \overline{\mathrm{r}}^{\prime} \mathrm{r}} / 4 \pi \varepsilon_{\mathrm{o}} \mid \overline{\mathrm{r}^{\prime}-} \overline{\mathrm{r}}\right) \mathrm{dv}$
$\underline{\overline{\mathrm{A}}}(\mathrm{r})=\int_{\mathrm{V}^{\prime}}\left(\underline{\mu_{0}} \underline{\overline{\mathrm{~J}}}(\overline{\mathrm{r}}) \mathrm{e}^{-\mathrm{jk} \mid \overline{\mathrm{r}}^{-}-\overline{\mathrm{r}} /} / 4 \pi\left|\overline{\mathrm{r}^{\prime}}-\overline{\mathrm{r}}\right|\right) \mathrm{dv} v^{\prime}$
$\underline{\Gamma}=\underline{T}-1$
$\overline{\mathrm{E}}_{\mathrm{ff}}=\hat{\vartheta}\left(\mathrm{j} \eta_{\mathrm{o}} \mathrm{kId} / 4 \pi \mathrm{r}\right) \mathrm{e}^{-\mathrm{jkr}} \sin \theta$
$\underline{\mathrm{T}}_{\mathrm{TE}}=2 /\left(1+\left[\eta_{\mathrm{o}} \cos \theta_{\mathrm{t}} / \eta_{\mathrm{t}} \cos \theta_{\mathrm{i}}\right]\right)$
$\underline{\mathrm{T}}_{\mathrm{TM}}=2 /\left(1+\left[\eta_{\mathrm{t}} \cos \theta_{\mathrm{t}} / \eta_{\mathrm{i}} \cos \theta_{\mathrm{i}}\right]\right)$
$\theta_{\mathrm{B}}=\tan ^{-1}\left(\varepsilon_{\mathrm{t}} / \varepsilon_{\mathrm{i}}\right)^{0.5}$ for TM

$$
\nabla^{2} \underline{\overline{\mathrm{~A}}}+\omega^{2} \mu_{0} \varepsilon_{0} \underline{\overline{\mathrm{~A}}}=-\mu_{\mathrm{o}} \underline{\overline{\mathrm{~J}}}
$$

$\mathrm{R}_{\mathrm{r}}=\mathrm{P}_{\mathrm{R}} /<\mathrm{i}^{2}(\mathrm{t})>$
$, \phi) \lambda^{2} / 4 \pi$

$$
=-\int_{\mathrm{V}} \overline{\overline{\mathrm{E}}} \cdot \overline{\mathrm{~J}} \mathrm{dv} \text { (Poynting Theorem) }
$$

skin depth $\delta=(2 / \omega \mu \sigma)^{0.5}[\mathrm{~m}]$
$\mathrm{P}_{\mathrm{d}} \cong\left|\overline{\mathrm{J}}_{s}\right|^{2} / 2 \sigma \delta\left[\mathrm{Wm}^{-2}\right]$

$$
\begin{aligned}
& \text { Media } \\
& \overline{\mathrm{D}}=\varepsilon_{0} \overline{\mathrm{E}}+\overline{\mathrm{P}} \\
& \nabla \cdot \overline{\mathrm{D}}=\rho_{\mathrm{f}}, \tau=\varepsilon / \sigma \\
& \nabla \bullet \varepsilon_{0} \overline{\mathrm{E}}=\rho_{\mathrm{f}}+\rho_{\mathrm{p}} \\
& \nabla \cdot \overline{\mathrm{P}}=-\rho_{\mathrm{p}}, \quad \overline{\mathrm{~J}}=\sigma \overline{\mathrm{E}} \\
& \overline{\mathrm{~B}}=\mu \overline{\mathrm{H}}=\mu_{0}(\overline{\mathrm{H}}+\overline{\mathrm{M}}) \\
& \varepsilon=\varepsilon_{0}\left(1-\omega_{p}{ }^{2} / \omega^{2}\right) \\
& \omega_{\mathrm{p}}=\left(\mathrm{Ne}^{2} / \mathrm{m} \varepsilon_{0}\right)^{0.5}
\end{aligned}
$$

Circuits

$\mathrm{KCL}: \Sigma_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}(\mathrm{t})=0$ at node
KVL: $\Sigma_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}(\mathrm{t})=0$ around loop
$\mathrm{C}=\mathrm{Q} / \mathrm{V}=\mathrm{A} \varepsilon / \mathrm{d}[\mathrm{F}]$
$\mathrm{L}=\Lambda / \mathrm{I}$
$\mathrm{i}(\mathrm{t})=\mathrm{Cdv}(\mathrm{t}) / \mathrm{dt}$
$\mathrm{v}(\mathrm{t})=\mathrm{L} \operatorname{di}(\mathrm{t}) / \mathrm{dt}=\mathrm{d} \Lambda / \mathrm{dt}$
$\mathrm{C}_{\text {parallel }}=\mathrm{C}_{1}+\mathrm{C}_{2}$
$\mathrm{C}_{\text {series }}=\left(\mathrm{C}_{1}^{-1}+\mathrm{C}_{2}^{-1}\right)^{-1}$
$\mathrm{w}_{\mathrm{e}}=\mathrm{Cv}^{2}(\mathrm{t}) / 2 ; \mathrm{w}_{\mathrm{m}}=\mathrm{Li}^{2}(\mathrm{t}) / 2$
$\mathrm{L}_{\text {solenoid }}=\mathrm{N}^{2} \mu \mathrm{~A} / \mathrm{W}$
$\tau=\mathrm{RC}, \tau=\mathrm{L} / \mathrm{R}$ $\Lambda=\int_{\mathrm{A}} \overline{\mathrm{B}} \bullet \mathrm{d} \overline{\mathrm{a}}$ (per turn)

Waveguides

$\underline{\mathrm{E}}_{\mathrm{TE}}=\hat{y} E_{o} \sin k_{x} x \cdot e^{-j k_{z} z}$
$\underline{\mathrm{E}}_{\mathrm{TE}}=\hat{y} E_{o} \sin k_{x} x \cdot e^{-\alpha z}$
$\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}=\mathrm{k}_{\mathrm{o}}^{2}=\omega^{2}\left(\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}}\right)$
$\lambda_{\mathrm{g}}=\lambda_{\mathrm{z}}=\left(\lambda_{\mathrm{o}}{ }^{-2}-\lambda_{\mathrm{x}}{ }^{-2}\right)^{-0.5}$
$\mathrm{v}_{\mathrm{g}}=\mathrm{c} \sin \theta_{\mathrm{i}}=\left(\partial \mathrm{k}_{\mathrm{z}} / \partial \omega\right)^{-1}$
$\mathrm{v}_{\mathrm{p}}=\mathrm{c} / \sin \theta_{\mathrm{i}}=\omega / \mathrm{k}_{\mathrm{z}}$

TEM Transients

$\partial \mathrm{v}(\mathrm{z}) / \mathrm{dz}=-\mathrm{L} \partial \mathrm{i}(\mathrm{z}) / \mathrm{dt}$
$\partial \mathrm{i}(\mathrm{z}) / \mathrm{dz}=-\mathrm{C} \partial \mathrm{v}(\mathrm{z}) / \mathrm{dt}$
$\partial^{2} v / d z^{2}=L C \partial^{2} v / d t^{2}$
$\mathrm{v}(\mathrm{z}, \mathrm{t})=\mathrm{f}_{+}(\mathrm{t}-\mathrm{z} / \mathrm{c})+\mathrm{f}_{-}(\mathrm{t}+\mathrm{z} / \mathrm{c})$
$=g_{+}(z-c t)+g_{-}(z+c t)$
$\mathrm{i}(\mathrm{z}, \mathrm{t})=\mathrm{Y}_{\mathrm{o}}\left[\mathrm{f}_{+}(\mathrm{t}-\mathrm{z} / \mathrm{c})-\mathrm{f}_{-}(\mathrm{t}+\mathrm{z} / \mathrm{c})\right]$
$\mathrm{c}=(\mathrm{LC})^{-0.5}=(\mu \varepsilon)^{-0.5}$
$Z_{o}=Y_{o}{ }^{-1}=(\mathrm{L} / \mathrm{C})^{0.5}$
$\Gamma_{\mathrm{L}}=\mathrm{f} / / \mathrm{f}_{+}=\left(\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{o}}\right) /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{o}}\right)$
$\mathrm{v}(\mathrm{z}, \mathrm{t})=\mathrm{g}_{+}(\mathrm{z}-\mathrm{ct})+\mathrm{g}_{-}(\mathrm{z}+\mathrm{ct})$
$\mathrm{V}_{\mathrm{Th}}=2 \mathrm{f}_{+}(\mathrm{t}), \mathrm{R}_{\mathrm{Th}}=\mathrm{Z}_{\mathrm{o}}$

Electromagnetic Forces

$$
\begin{aligned}
& \overline{\mathrm{f}}=\mathrm{q}\left(\overline{\mathrm{E}}+\overline{\mathrm{v}} \times \mu_{\mathrm{o}} \overline{\mathrm{H}}\right)[\mathrm{N}] \\
& \mathrm{f}_{\mathrm{z}}=-\mathrm{dw} / \mathrm{dz} \\
& \overline{\mathrm{~F}}=\overline{\mathrm{I}} \times \mu_{\mathrm{o}} \overline{\mathrm{H}}\left[\mathrm{Nm}^{-1}\right] \\
& \overline{\mathrm{E}}_{\mathrm{e}}=-\overline{\mathrm{v}} \times \mu_{\mathrm{o}} \overline{\mathrm{H}} \text { inside wire } \\
& \mathrm{P}=\omega \mathrm{T}=\mathrm{W}_{\mathrm{T}} \mathrm{~d} \mathrm{~V}_{\text {olume }} / \mathrm{dt}[\mathrm{~W}] \\
& \mathrm{Max} / \mathrm{A}=\mathrm{B}^{2} / 2 \mu_{\mathrm{o}}, \mathrm{D}^{2} / 2 \varepsilon_{\mathrm{o}}\left[\mathrm{Nm}^{-2}\right] \\
& \mathrm{vi}=\frac{\mathrm{dw}_{\mathrm{T}}}{\mathrm{dt}}+\mathrm{f} \frac{\mathrm{dz}}{\mathrm{dt}}
\end{aligned}
$$

Kinematics

$\mathrm{f}=\mathrm{ma}=\mathrm{d}(\mathrm{mv}) / \mathrm{dt}$
$x=x_{0}+v_{0} t+\mathrm{at}^{2} / 2$
$\mathrm{P}=\mathrm{fv}[\mathrm{W}]=\mathrm{T} \omega$
$\mathrm{w}_{\mathrm{k}}=\mathrm{mv}^{2} / 2$
$\mathrm{T}=\mathrm{I} d \omega / \mathrm{dt}$
$\mathrm{I}=\Sigma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}$

TEM Sinusoidal Steady State
$\left(\mathrm{d}^{2} / \mathrm{dz} z^{2}+\omega^{2} \mathrm{LC}\right) \underline{\mathrm{V}}(\mathrm{z})=0$
$\underline{\mathrm{V}}(\mathrm{z})=\underline{\mathrm{V}}_{+} \mathrm{e}^{-\mathrm{jkz}}+\underline{\underline{\mathrm{V}}}-\mathrm{e}^{+\mathrm{jkz}}$
$\underline{\mathrm{I}}(\mathrm{z})=\overline{\mathrm{Y}_{0}}\left[\underline{\mathrm{~V}_{+}}+\mathrm{e}^{-\mathrm{jkz}}-\underline{\mathrm{V}_{-}} \mathrm{e}^{+\mathrm{jkz}}\right]$
$\mathrm{k}=2 \pi / \lambda=\omega / \mathrm{c}=\omega(\mu \varepsilon)^{0.5}$
$\underline{Z}(\mathrm{z})=\underline{\mathrm{V}}(\mathrm{z}) / \underline{\mathrm{I}}(\mathrm{z})=\mathrm{Z}_{\mathrm{o}} \underline{\mathrm{Z}}_{\mathrm{n}}(\mathrm{z})$
$\underline{Z}_{\underline{n}}(\mathrm{z})=[1+\underline{\Gamma}(\mathrm{z})] /[1-\underline{\Gamma}(\mathrm{z})]=\mathrm{R}_{\mathrm{n}}+\mathrm{j} \mathrm{X}_{\mathrm{n}}$
$\underline{\Gamma}(\mathrm{z})=\left(\underline{\mathrm{V}}_{-} / \underline{\mathrm{V}}_{+}\right) \mathrm{e}^{2 \mathrm{jkz}}=\left[\underline{Z}_{\mathrm{n}}(\mathrm{z})-1\right] /\left[\underline{Z}_{\mathrm{n}}(\mathrm{z})+1\right]$
$\underline{\underline{Z}}(z)=Z_{o}\left(\underline{Z_{L}}-j Z_{0} \operatorname{tankz}\right) /\left(Z_{o}-j \underline{Z_{L}} \operatorname{tankz}\right)$
$\operatorname{VSWR}=\left|\underline{V}_{\text {max }}\right| /\left|\underline{V}_{\text {min }}\right|=\mathrm{R}_{\text {nax }}$

RLC Resonators

$\underline{Z}_{\text {series }}=\mathrm{R}+\mathrm{j} \omega \mathrm{L}+1 / j \omega \mathrm{C}$
$\underline{Y}_{p a r}=G+j \omega C+1 / j \omega L$
$\mathrm{Q}=\omega_{0} \mathrm{~W}_{\mathrm{T}} / \mathrm{P}_{\text {diss }}=\omega_{0} / \Delta \omega$
$\omega_{0}=(\mathrm{LC})^{-0.5}$

EM Resonators

At $\omega_{\mathrm{o}},\left\langle\mathrm{w}_{\mathrm{e}}\right\rangle=\left\langle\mathrm{w}_{\mathrm{m}}\right\rangle$ $\left\langle W_{\mathrm{e}}\right\rangle=\int_{\mathrm{V}}\left(\varepsilon|\overline{\bar{E}}|^{2} / 4\right) \mathrm{dv}$ $\left\langle\mathrm{w}_{\mathrm{m}}\right\rangle=\int_{\mathrm{V}}\left(\mu|\underline{\bar{H}}|^{2} / 4\right) \mathrm{dv}$
$\mathrm{Q}_{\mathrm{n}}=\omega_{\mathrm{n}} \mathrm{W}_{\mathrm{Tn}} / \mathrm{P}_{\mathrm{n}}=\omega_{\mathrm{n}} / 2 \alpha_{\mathrm{n}}$

Acoustics

$\mathrm{P}=\mathrm{P}_{\mathrm{o}}+\mathrm{p}, \overline{\mathrm{U}}=\overline{\mathrm{U}}_{\mathrm{o}}+\mathrm{u}$
$\nabla \mathrm{p}=-\rho_{\mathrm{o}} \partial \overline{\mathrm{u}} / \partial \mathrm{t}$
$\nabla \cdot \overline{\mathrm{u}}=-\left(1 / \gamma \mathrm{P}_{\mathrm{o}}\right) \partial \mathrm{p} / \partial \mathrm{t}$
$\left(\nabla^{2}-\mathrm{k}^{2} \partial^{2} / \partial \mathrm{t}^{2}\right) \mathrm{p}=0$
$\mathrm{k}^{2}=\omega^{2} / \mathrm{c}_{\mathrm{s}}^{2}=\omega^{2} \rho_{\mathrm{o}} / \gamma \mathrm{P}_{\mathrm{o}}$
$c_{s}=v_{p}=v_{g}=\left(\gamma \mathrm{P}_{\mathrm{o}} / \rho_{\mathrm{o}}\right)^{0.5}$ or $\left(\mathrm{K} / \rho_{\mathrm{o}}\right)^{0.5}$
$\eta_{\mathrm{s}}=\mathrm{p} / \mathrm{u}=\rho_{\mathrm{o}} \mathrm{c}_{\mathrm{s}}=\left(\rho_{\mathrm{o}} \gamma \mathrm{P}_{\mathrm{o}}\right)^{0.5}$ gases
$\eta_{\mathrm{s}}=\left(\rho_{\mathrm{o}} \mathrm{K}\right)^{0.5}$ solids, liquids
$\mathrm{p}, \overline{\mathrm{u}}_{\perp}$ continuous at boundaries
$\mathrm{p}=\mathrm{p}_{+} \mathrm{e}^{-\mathrm{jkz}}+\mathrm{p}_{-} \mathrm{e}^{+\mathrm{jkz}}$
$\mathrm{u}_{\mathrm{z}}=\eta_{\mathrm{s}}{ }^{-1}\left(\mathrm{p}_{+} \mathrm{e}^{-\mathrm{jkz}}-\mathrm{p}-\mathrm{e}^{+\mathrm{jkz}}\right)$
$\int_{\mathrm{A}} \overline{\mathrm{up}} \cdot \mathrm{d} \overline{\mathrm{a}}+(\mathrm{d} / \mathrm{dt}) \int_{\mathrm{V}}\left(\rho_{\mathrm{o}}|\overline{\mathrm{u}}|^{2} / 2+\mathrm{p}^{2} / 2 \gamma \mathrm{P}_{\mathrm{o}}\right) \mathrm{dV}=0$

