Final Review Packet, 4/26/05

Final Exam
May, 172004
Spring 2004. 1:30-4:30PM
6.641 Formula Sheet Attached in the study materials section.

You are also allowed to use the formula sheets that you prepared for Quiz 1, Quiz 2, and an additional $8 \frac{1}{2}$ "x 11 " formula sheet (both sides) that you have prepared for the Final.

Problem 1 (25 points)

A potential sheet of infinite extent in the y and z directions is placed at $x=0$ and has potential distribution $\Phi(x=0, y)=V_{0} \cos k y$. Free space with no conductivity ($\sigma=0$) and permittivity ε_{0} is present for $x<0$ while for $0<x<s$ a perfectly insulating dielectric ($\sigma=0$) with permittivity ε is present. The region for $x>s$ is a grounded perfect conductor at zero potential.
a) What are the potential distributions for $x<0$ and $0<x<s$?

$$
\Phi(x, y)=\left\{\begin{array}{l}
v_{0} \cos k y e^{k x} \quad x<0 \\
-\frac{v_{0} \sinh k(x-s) \cos k y}{\sinh k s} \quad 0<x<s
\end{array}\right.
$$

b) What are the surface charge densities at $x=0, \sigma_{f}(x=0, y)$, and at $x=s, \sigma_{f}(x=s, y)$?

c) What is the force, magnitude and direction, on a section of the perfect conductor at $x=s$
that extends over the region $0<y<\frac{\pi}{k}$ and $0<z<D$?

$$
\begin{aligned}
& \text { Hint: } \int \cos ^{2} y d y=y / 2+(\sin 2 y) / 4 \\
& \text { area }=\left.\frac{1}{2} \sigma_{f} E_{x}\right|_{x=s}=-\left.\frac{1}{2} \epsilon E_{x}^{2}\right|_{x=s}=-\frac{1}{2} \in \frac{\left(l_{e} V_{0} \cos y\right)^{2}}{\sinh ^{2} k s} \\
& F_{x}=-\frac{1}{2} \frac{\epsilon_{1}^{2} V_{0}^{2} D}{\sinh ^{2} l_{s}} \int_{0}^{\pi / h k} \cos ^{2} k y d y=-\frac{\pi}{4} \frac{\epsilon l_{0}^{2} D}{\sinh ^{2} \operatorname{ses}}
\end{aligned}
$$

Problem 2 (25 points)

Parallel plate electrodes with spacing h and depth D are excited by a DC current source I. An elastic rod surrounded by free space has mass density ρ, modulus of elasticity E, equilibrium length ℓ and has infinite ohmic conductivity σ. The elastic rod end at $x=0$ is fixed while the deflections of the rod are described as $\delta(x, t)$ and are assumed small $|\delta(x, t)| \ll \ell$. The rod width $\ell-\delta(-\ell, t)$ changes as I is changed because of the magnetic force. The DC current flows as a surface current on the $x=-(\ell-\delta(-\ell, t))$ end of the perfectly conducting rod.
a) Calculate H_{z} in the free space region $-a<x<-(\ell-\delta(-\ell, t))$. Neglect fringing field effects and assume $h \ll a$ and $h \ll D$.

$$
H_{z}=\frac{I}{D}
$$

b) Using the Maxwell Stress Tensor calculate the magnetic force per unit area on the $x=-(\ell-\delta(-\ell, t))$ end of the rod.

$$
\begin{aligned}
& x=-(\ell-\delta(-\ell, t)) \text { end of the rod } \\
& T_{x x}=\left.\frac{1}{2} \mu_{0}\left[H_{x}^{2}-H_{y}^{2}-H_{2}^{2}\right]\right|_{x=-(Q-S-l,+1)}=-\frac{\mu_{0}}{2} \frac{I^{2}}{D^{2}} \\
& \frac{F_{x}}{a r e a}=-\left.T_{x x}\right|_{x=-(Q-\delta(-l, t))}=\frac{\mu_{0}}{2} \frac{I^{2}}{D^{2}}
\end{aligned}
$$

c) Calculate the steady state change in rod length $\delta(x=-\ell)$.

$$
\begin{aligned}
& \rho \frac{\partial^{2} \delta \gamma^{0}}{\partial t^{2}}=E \frac{\partial^{2} \delta}{\partial x^{2}} \Rightarrow \delta=a x+b \quad a=-\frac{\mu_{0} \pm^{2}}{2 D^{2} E} \Rightarrow \delta(x)=-\frac{\mu_{0} I^{2} x}{2 E D^{2}} \\
& \delta(x=0)=b=0 \\
& \left.E \frac{\partial \delta}{\partial x}\right|_{x=-8}=T_{x x}=-\frac{\mu_{0}}{\delta^{2}} \frac{x^{2}}{\partial^{2}}=E_{a} \\
& \delta(-l)=\frac{\mu_{0} I^{2}}{2 E D^{2}}
\end{aligned}
$$

d) Noise creates fluctuations $\delta^{\prime}(x, t)$ in longitudinal displacement. What are the natural

$$
\begin{aligned}
& \text { frequencies of the rod? } \\
& \rho \frac{\partial^{2} \delta^{\prime}}{\partial t^{2}}=E \frac{\partial^{2} \delta^{\prime}}{\partial x^{2}}, \delta^{\prime}(x, t)=t_{e}\left[\hat{\delta}(x) e^{j \omega t}\right] \\
& -\frac{e \omega^{2}}{E} \hat{\delta}(x)=\& \frac{d^{2} \hat{\delta}}{d x^{2}} \Rightarrow \frac{d^{2} \hat{\delta}}{d x^{2}}+l^{2} \hat{\delta}=0, l^{2}=\omega^{2} \rho l E \\
& \hat{\delta}(x)=A \sin l x+B \cos l x \\
& \frac{\hat{\delta}}{}(x=0)=B=0 \\
& \left.\frac{d \hat{\zeta}^{\prime}}{\partial x}\right|_{x=-l}=0=l A \cos \operatorname{lel} l \Rightarrow \operatorname{le} l=(2 n+1) \frac{\pi}{2}, n=0,1,2,
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{n} \sqrt{P l E}=l_{n}=(2 n+1) \frac{\pi}{2 l} \\
& \omega_{n}=\sqrt{\frac{E}{l}} \frac{\pi}{2 l}(2 n+1), n=0,142
\end{aligned}
$$

Problem 3 (25 points)

An electrical transmission line of length ℓ has characteristic impedance Z_{0}. Electromagnetic waves can travel on the line at speed c, so that the time to travel one-way over the line length ℓ is $T=\ell / c$. The line is matched at $z=0$ and is short circuited at $z=\ell$. At time $t=0$, a lightning bolt strikes the entire line so that there is a uniform current along the line but with zero voltage:

$$
\left.\begin{array}{l}
i(z, t=0)=I_{0} \\
v(z, t=0)=0
\end{array}\right\} \quad 0<z<\ell
$$

Since the voltage and current obey the telegrapher's relations:

$$
\begin{array}{ll}
\frac{\partial v}{\partial z}=-L \frac{\partial i}{\partial t}, \quad c=\frac{1}{\sqrt{L C}} \\
\frac{\partial i}{\partial z}=-C \frac{\partial v}{\partial t}, \quad Z_{0}=\sqrt{L / C}
\end{array}
$$

the voltage and current along the line are related as

$$
\begin{aligned}
& v+i Z_{0}=c_{+} \text {on } \frac{d z}{d t}=c \\
& v-i Z_{0}=c_{-} \text {on } \frac{d z}{d t}=-c
\end{aligned} \quad \Rightarrow \quad v=\frac{c_{+}+c_{-}}{2}
$$

a) The solutions for $v(z, t)$ and $i(z, t)$ can be found using the method of characteristics within each region shown below. Within regions 1-9 give the values of c_{+}, c_{-}, v and $i Z_{0}$.

b) Plot $v(z, t=T / 4)$ and $i(z, t=T / 4)$.

c) How long a time does it take for the transmission line to have $v(z, t)=0$ and $i(z, t)=0$ everywhere for $0<z<\ell$ for all further time? $2 T$

Problem 4 (25 points)

A perfectly conducting membrane of depth D with mass per unit area σ_{m} and tension S is a distance h above a rigid perfect conductor. The membrane and rigid conductor are in free space and support currents such that when the membrane is flat, $\xi(x, t)=0$, the static uniform magnetic field intensity is H_{0}. As the membrane deforms, the flux through the region between membrane and rigid conductor is conserved. The system is in a downward gravity field with gravitational acceleration $\bar{g}=-g \bar{i}_{z}$. The membrane deflection has no dependence on y and is fixed at its two ends at $x=0$ and $x=\ell$.
a) Assuming that $\xi(x, t) \ll h$ and that the only significant magnetic field component is x directed, how is $H_{x}(x, t)$ approximately related to $\xi(x, t)$ to linear terms in $\xi(x, t)$?

$$
H_{x}(h+\xi)=H_{0} h \Rightarrow H_{x}=\frac{H_{0} h}{h+\xi}=\frac{H_{0}}{1+\xi / h} \approx H_{0}(1-\xi / h)
$$

b) Using the Maxwell Stress tensor and the result of part (a), to linear terms in small displacement $\xi(x, t)$, what is the z directed magnetic force per unit area, F_{z}, on the $T_{z z}=\frac{\mu_{0}}{2}\left(H_{z}^{2 \mu^{0}}-H_{x}^{2}-\not H_{y}^{2}\right)^{0}=-\frac{\mu_{0}}{3^{2}} H_{0}^{2}\left(1-\frac{\xi}{h}\right)^{2} \approx-\frac{\mu_{0} H_{0}^{2}}{2}\left(1-\frac{2 \xi}{h}\right)$ $F_{z}=-T_{z z}=\frac{\mu_{0} H_{0}^{2}}{2}\left(1-\frac{23^{2}}{h}\right)$
c) To linear terms in small displacement $\xi(x, t)$, express the membrane equation of motion in the form

$$
a \frac{\partial^{2} \xi}{\partial t^{2}}=b \frac{\partial^{2} \xi}{\partial x^{2}}+c \xi+d
$$

What are a, b, c, and d ?

$$
\begin{aligned}
\sigma_{m} \frac{\partial^{2} \xi}{\partial t^{2}} & =S \frac{\partial^{2} \xi}{\partial x^{2}}+F_{z}-\sigma_{m} g \\
& =S \frac{\partial^{2} \xi}{\partial x^{2}}+\mu_{0} H_{0}^{2}\left(1-\frac{2 \xi}{h}\right)-\sigma_{m} g \\
a=\sigma_{m}, b & =S, c=-\frac{\mu_{0} H_{0}^{2}}{h}, d=\frac{\mu_{0} H_{0}^{2}}{2}-\sigma_{m-9}
\end{aligned}
$$

d) What value of H_{0} is needed so that in static equilibrium, the membrane has no sag, $\xi(x, t)=0 . \quad \mu_{0} H_{0}^{2}=\sigma_{m} g \Rightarrow H_{0}=\left[\frac{2 \sigma_{m} g}{\mu_{0}}\right]^{1 / 2}$

Continue to next page for parts (e)-(g)

Prob. 4 continued.
e) About the equilibrium of part (d), what is the $\omega-k$ dispersion relation for membrane deflections of the form

$$
\xi(x, t)=\operatorname{Re}\left[\hat{\xi} e^{j(a t-k x)}\right] ?
$$

Solve for k as a function of ω and system parameters.

$$
\begin{aligned}
& -\sigma_{m} \omega^{2}=-S l^{2}-\frac{\mu_{0} H_{0}^{2}}{h} \\
& l_{k}^{2}=\frac{\sigma_{m} \omega^{2}}{S}-\frac{\mu_{0} H_{0}^{2}}{h S} \\
& l_{2}= \pm\left[\frac{\sigma_{m} \omega^{2}}{S}-\frac{\mu_{0} H_{0}^{2}}{h S}\right]^{1 / 2} \\
& l_{e_{0}}=+\left[\frac{\sigma_{m} \omega^{2}}{s}-\frac{\mu_{0} H_{0}^{2}}{h S}\right]^{1 / 2}
\end{aligned}
$$

f) Using all the values of k found in part (e), find a superposition of solutions of the form of $\xi(x, t)$ given in (e), that satisfy the zero deflection boundary conditions at the ends of the membrane at $x=0$ and $x=\ell$. What are the allowed values for k ?

$$
\begin{aligned}
& \xi(x, t)=\operatorname{Re}\left[e^{j \omega t}\left[\hat{\xi}_{1} e^{-j l_{0} x}+\hat{\xi}_{2} e^{+j l_{0} x}\right]\right] \\
& \xi(x=0, t)=0=\operatorname{Re}\left[e^{j \omega t}\left[\hat{\xi}_{1}+\hat{\xi}_{2}\right]\right] \Rightarrow \hat{\xi}_{2}=-\hat{\xi}_{1} \\
& \xi(x, t)=\operatorname{Re}\left[e^{j \omega t} \hat{j}\left[e^{-j h_{0} x}-e^{j l_{0} x}\right]\right] \\
&=\operatorname{Re}\left[e^{j \omega t} \xi_{1}(-2 j) \sin h_{0} x\right] \\
& \xi\left(x=\ell_{1} t\right)=0=\operatorname{Re}\left[e^{j \omega t} \hat{\xi}_{1}(-2 j) \sin h_{0} l\right]=0 \\
& \sin h_{0} l=0 \Rightarrow k_{0} l=n \pi, u=1, z_{1} \ldots
\end{aligned}
$$

g) Is this system always stable or under what conditions can it be unstable? When stable, what are the natural frequencies and if unstable what are the growth rates of the instability?

$$
\begin{aligned}
& \omega^{2}=\frac{S}{\sigma_{m}} h^{2}+\frac{\mu_{0} H_{0}^{2}}{h \nabla_{m}} \\
& \omega_{n}=\left[\frac{S}{\sigma_{m}}\left(\frac{n \pi}{l}\right)^{2}+\frac{\mu_{0} t_{0}^{2}}{h \sigma_{m}}\right]^{1 / 2} \quad \text { Alwogs stable as mn real }
\end{aligned}
$$

