Compound Semiconductor Nanowires: An Overview

Final Project, SMA 6.772

Oded Rabin M.I.T.

Courtesy of Oded Rabin. Used with permission.

Outline

- Introduction
- Fabrication
 - The Vapor-Liquid-Solid growth mechanism
- One-dimensional phenomena
- Devices

Introduction

- Nanowires: solid 1-dimensional structures

 Longitudinal dimension > 1 μm
 Lateral dimensions < 100 nm
- Embedded vs. Self-supported

Fabrication

VLS Mechanism

Nanowires by the Vapor Liquid Solid (VLS) method

Laser ablation overcomes thermodynamic equilibrium constraints, and enables liquid nanocluster formation.

- a) FESEM image of GaP nanowires. Inset: TEM image of the end of one of these wires.
- b) SEM image of Si nanowires, with Au-Si catalyst nanoparticles.

Crystallinity

Si Nanowire

- (100), (111) crystal axis along growth direction
- Thick amorphous oxide (~5nm) cladding a crystalline core.

Crystallinity

GaN Nanowire

- (100) crystal axis along growth direction
- Continuity of the lattice up to the surface (~1nm oxide)

VLS Semiconductor Nanowire Repertoire

GaN	InP	ZnS	CdS
GaAs	InAs	ZnSe	CdSe
Ternary	SC	Si Ge	SiC TiC

ZnO and other oxides

Electronic Structure in a 1D System

Quantum Confinement in Si Nanowires

Scanning tunneling microscopy & spectroscopy (STM/STS) studies on small-diameter (1.3-7 nm) Si nanowires.

- Growth along (110) and (112) directions.
- The bandgap of the SiNW, deduced from STS tunneling conductances, shows wire diameter
- shows wire diameter dependence.

Tunable Bandgap in InP Nanowires

Luminescence spectrum is controlled by **size** and **geometry**, not by **composition**.

M. S. Gudiksen et al., J. Phys. Chem B 106, 4036 (2002)

Surface Effects

Surface =
$$2\pi rL$$

Volume = πr^2L
 \downarrow
Surface/Volume αr^{-1}

- A large fraction of the atoms is on the surface.
- The carriers are at most several nanometers away from the surface.

Nanowire Sensor Surface effects

- Chemical gating of the nanowire.
- Reversible changes in conductance.
- Enhanced sensitivity due to small size of conduction channel.
- Multiplexing : 1 mm² can fit 1 million chemicallymodified nanowires.

Conclusions

- Nanowires with controlled, uniform diameter can be prepared by the VLS method from a large variety of SCs.
- Devices of various types have been demonstrated, being advantageous mainly for their small sizes.
- One-dimensional systems show interesting physical phenomena (quantum confinement, 1D DOS, surface effects, strain relaxation) that are not present in the bulk. These have not yet been creatively utilized in applied devices.