
6.821 Programming Languages Handout
Fall 2002

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

Problem Set 8

Problem 1: Concurrency

Dr. Brian Storm is working late one night when he realizes that most computers spend far more time waiting
for commands from their users than actually carrying out the commands. Quickly, he decides to harness the
vast power of these idle cycles by creating an implementation of PostFix that can execute in a distributed
fashion.

In Dr. Storm’s new language, a number of PostFix processes can execute simultaneously, each on a differ
ent computer. Two processes running on different machines can cooperate by exchanging messages over a
network connecting all of the computers. Dr. Storm decides to call his new language POW! — PostFix Over
Wires!.

Having taken 6.821 while a student at MIT, Dr. Storm knows that he should test his ideas out first
by creating an operational semantics for his new language. He begins by deciding that a process will be
represented by a triple consisting of a unique process identifier (pid), the commands of the process, and the
stack of the process. Thus a configuration becomes a set of processes:

π ∈ Pid = IntLit
p ∈ Process = Pid × Commands × Stack
c ∈ C = {X | X is a set of processes with unique pids}

Dr. Storm has no trouble adapting the rewrite rules for the usual Postfix commands to his new semantics.
For example:

c ∪ {�π, N.Q, S�} ⇒ c ∪ {�π, Q, N.S�}

c ∪ {�π, dup.Q, V.S�} ⇒ c ∪ {�π, Q, V.V.S�}

c ∪ {�π, pop.Q, V.S�} ⇒ c ∪ {�π, Q, S�}

c ∪ {�π, swap.Q, V1.V2.S�} ⇒ c ∪ {�π, Q, V2.V1.S�}

Having worked through the night constructing the foundation of POW!, Dr. Storm leaves for home and
some badly needed sleep. But before he leaves, he lets you in on his plans for POW! and asks you to fill in
the details.

a.	 Dr. Storm decides that a POW! program will start off executing a single process with pid 0, which will
“spawn” new processes as necessary. The value of the POW! program will be the value at the top of
the stack of process 0 when it runs out of commands.
Define the input function, the set of final configurations, and the output function for POW!. Beware
that there is a certain amount of ambiguity in this question regarding final states and errors. In your
solution you should point out these ambiguities and state how you resolve them. For instance, you
should give a careful description of how you handle errors, and a precise definition of what you
consider to be a “stuck state”, if your description uses them.

b. Dr. Storm adds the following concurrency primitives to the grammar of Postfix:

C ::= spawn | pid | channel | send | receive | . . .
Here is an informal description of the behavior of the new commands:

•	 spawn: If the stack of the parent process executing the spawn command is of the form Q.S, then a
new process is created, with a fresh pid, command sequence Q, and stack S. The stack of parent
becomes S; both the parent and the child have the same stack after spawn.

•	 pid: The process executing the pid command pushes its process number onto its stack. (Although
process ids are represented as IntLits, you are not allowed to add process ids to IntLits. All
functions on IntLits have been changed to reflect this.)

•	 channel: The process executing the channel command pushes a fresh channel onto its stack. A
channel is something over which messages can be exchanged (see send and receive). Dr. Storm
has already added a domain equation for channels and extended the value domain to include
channels and process ids (to make them first-class, of course... yeah! first-class!):

W ∈ Channel = IntLit
V ∈ Value = Channel + Pid + . . .

(Although channels are represented as IntLits, you are not allowed to add channels to IntLits or
send messages over IntLits. As with Pids, functions on IntLits have been modified to reflect this
restriction.)

•	 send and receive: These two commands are used to invoke synchronous message passing over
a channel. In synchronous message passing, two processes must rendezvous in order to exchange
a message: the message exchange occurs in one atomic step, and if a process tries to send when
no other process is ready to receive, the sending process is blocked — it cannot proceed with the
send and must wait. Similarly, a process that tries to receive when no process is ready to send
cannot proceed.
A process is ready to send value V over channel W if its first command is send, the top value on its
stack is V , and the next-to-top value on its stack is W .
A process is ready to receive over channel W if its first command is receive and the top value on
its stack is W .
If ps is ready to send value V over channel W and pr is ready to receive over channel W then
the processes can exchange the message in a single step: V is popped from the stack of ps and
pushed onto the stack of pr . The channel W is not popped off either stack. Note that if more than
one process is ready to send or receive on the same channel, pair selection is non-deterministic.
That is to say any sender/receiver pair may be selected from the set of candidate processes
attempting to communicate on the channel.

Provide the rewrite rules for spawn, pid, channel, send, and receive.

Problem 2: Memory Management

Ben Bitdiddle has been called in by the Analog Equipment Corporation to consult on a difficult memory
management problem. Analog uses Balsa, a programming language that stack allocates all continuations
and environments. Since Balsa does not support a garbage collector, heap storage must be explicitly man-
aged by programmers via calls to the procedures malloc and free:

E ::= (malloc E) | (free E) | . . .

Here is the informal description of malloc and free from the Balsa ANSI Standard:

•	 (malloc E): If the value of E is a positive integer n, returns a location for a block of storage that is n+1
words long. The first word of the returned block is a size header; the other n words are uninitialized.

•	 (free E): If the value of E is a location, frees the storage at that location and returns an unspecified
value.

2

Analog is having problems with a very large Balsa application (called “The Titanic” by the development
staff) that eventually always either mysteriously crashes or runs out of heap space. Ben suspects that the
programmers who wrote the application are not properly deallocating storage.

In order to debug Analog’s problem Ben decides to write a standard stop-and-copy garbage collector
for Balsa. He modifies malloc and free to keep track of the total amount of “busy” storage — malloc
increments a *busy* counter with the number of words in the object it creates and free decrements the
busy counter by the number of words in the object it frees. In Ben’s system free does not actually free
any storage. Instead, when storage is exhausted, the garbage collector runs and copies live storage (storage
that is reachable from a root set) from old space into new space.

a.	 Let live be the number of words copied during a garbage collection and busy be the value of the
busy counter at the time of the garbage collection. In each of the following situations encountered
while executing the program in Ben’s system with garbage collection, describe the implications for
executing the original Balsa program without garbage collection:

(i) live < busy

(ii) live > busy

(iii) live = busy

b.	 A dangling reference is a pointer to a freed block of memory that is still reachable from the root set.
How could Ben modify his garbage collector to detect dangling references?

c.	 Ben tries his garbage collector out on another program from Analog Equipment Corporation. The
development staff at AEC have used program verification techniques to prove that this program does
not have a storage leak and in fact it runs just fine without garbage collection. However, when Ben
runs the program with garbage collection, the garbage collector runs out of memory. What is going
on? You should assume that the program verificiation techniques were valid and used correctly.

Problem 3: funrec

Chloe Jour has been experimenting with the TORTOISE compiler. She notes that the representation of pro
cedures in TORTOISE is not very efficient, particularly for recursive procedures. Consider, for example, the
following code:

(letrec ((even? (lambda (a) (if (= 0 a)
#t
(odd? (- a 1)))))

(odd? (lambda (b) (if (= 0 b)
#f
(even? (- b 1))))))

Ebody)

The procedures even? and odd? are represented by the structures depicted in Figure 1. In the figure, even?
and odd? are pointers to closure blocks. Each closure block has four data slots: the first holds a pointer to the
code of the procedure, and the remainder point to the free variables of the procedure (i.e., they constitute
its environment). The cells in the picture “tie the knot” of the mutual recursion; they are introduced by a
combination of the letrec desugaring and assignment conversion.

Chloe observes that it is possible to represent a set of mutually recursive procedure by a single closure
that combines the code pointers and free variables of all the procedures. For example, she condenses the
closures from Figure 1 into the single closure depicted in Figure 2. The merged data structure is a block with
four data slots: the first data slot holds a pointer to the code for even?; the second holds a pointer to the
code for odd?, and the remainder point to the free variables contained in the bodies of both procedures. The
new data structure represents in 5 words of memory what used to take 14 words — a considerable space
savings. Chloe’s representation saves time as well; since it has no cells, the time overhead of indirecting
through the cells is removed.

3

+---+
|
| +---------+

even? ----+----->| closure |

| *----|----> code for even?
+------+

| *----|---------------------->| cell |
+------+

| *----|----> closure for = | * |
+---|--+

| *----|----> closure for - |
+---------+ |

|
+--+
|
| +---------+

odd? -----+----->| closure |

| *----|----> code for odd?
+------+

| *----|---------------------->| cell |
+------+

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| *----|----> closure for = | *--|-----+
+------+

| *----|----> closure for -
+---------+

Figure 1: Closures and environments for the letrec example. We assume that the globalizing phase wraps
the program with bindings for = and - so they are free in the procedures.

+---------+

even? ----> | closure |

+---------+

odd? ----->	 | *-----|--------> code for even?

+---------+
| *-----|--------> code for odd?
+---------+
| *-----|--------> closure for =
+---------+
| *-----|--------> closure for -
+---------+

Figure 2: Chloe’s merged closure structure for the even?/odd? example.

4

In Chloe’s representation, each mutually recursive procedure does not have its own closure block. In-
stead, a single closure block is shared among all the procedures. Different procedures are represented by
pointers to different parts of the closure block. In the example, even? points to the header of the closure
block (as usual), but odd? points to the first data word of the block. This trick allows the new procedure
representation to be called in exactly the same way as the old representation: in both representations, a
procedure is a pointer to a word in memory just before the word containing the code pointer for the proce
dure. A call does not need to know which sort of procedure it is applying; it only needs to extract the code
pointer from the representation. In either case, it can access the code pointer by loading the word just past
that pointed to by the procedure representation.

To experiment with this new representation, Chloe adds a new form, funrec, to SCHEME. funrec is a
specialized form of letrec, restricted to defining recursive procedures.

A funrec expression has the general form:

(funrec ((I0 (lambda (I0−arg *) E0))
(I1 (lambda (I1−arg *) E1))

. . .
(In (lambda (In−arg *) En)))

Ebody)

Each Ii is a procedure being defined by the funrec, with arguments Ii−arg * and body Ei. Every procedure
Ii can be used in every body Ej as well as in Ebody . Since Chloe’s representation for the procedures does not
employ any cells, she declares that it is illegal to set! the variables I0, . . ., In bound by the funrec. Using
her new funrec construct, Chloe expresses the even?/odd? example as:

(funrec ((even? (lambda (a) (if (= 0 a)
#t
(odd? (- a 1)))))

(odd? (lambda (b) (if (= 0 b)
#f
(even? (- b 1))))))

Ebody)

Chloe extends several phases of the TORTOISE compiler to handle funrec: the desugarer, globalizer, assign
ment converter, and CPS converter. She is just starting to modify the closure converter when her brother
Supta reminds her that they have a dinner engagement. She asks you to extend this phase of compilation
to handle funrec.

Before she leaves, she gives you the following information:

•	 The (unmodified) TORTOISE compiler can be found in the course directory in the subdirectory
code/book/ch15:compilation. This subdirectory contains numerous files; see the README file for doc
umentation. The compiler can be loaded into Scheme by loading the file load.scm.

•	 As part of her extensions, Chloe has written two new files that should be loaded into Scheme after the
original compiler. These can be found in the course directory in the subdirectory code/ps8:

–	 funrec.scm contains the modifications that allow the early phases of the compiler to handle
funrec.

–	 closurize.scm contains a new closure converter that Chloe was writing before she was called
away. This file supersedes the closure-convert.scm file from the original TORTOISE implementa
tion. For convenience, the contents of this file are presented in Figure 3. The closurize procedure
converts every lambda and funrec into a flat closure. The converter is complete except for the
definition of closurize-funrec, which you are responsible for writing.

•	 Chloe has extended the set of closure primops to allow pointers into the middle of closures. As before,
closure creates a closure block and returns a pointer to the header word of the block. But Chloe has
added a new primop, closure-shift, that returns a pointer into a given closure at a specified off-
set. Given pointer (word address) p into a closure and a word offset o, (primop closure-shift p o)

5

returns the pointer p + o. The offset may be positive, zero, or negative, but the resulting pointer is re
quired to be within the closure block; it is an error if this condition is not met. Chloe has also extended
the primitives closure-ref and closure-set! to handle negative offsets, again with the restriction
that all references must lie within the closure block.

For example, consider the following sequence of evaluations:

(define c (%closure 3 5 7))

(%closure-ref c 0) −→ 3
(%closure-ref c 1) −→ 5
(%closure-ref c 2) −→ 7

(define c+2 (%closure-shift c 2))

(%closure-ref c+2 -2) −→ 3
(%closure-ref c+2 -1) −→ 5
(%closure-ref c+2 0) −→ 7
(%closure-ref c+2 1) −→ error

(define c+1 (%closure-shift c+2 -1))

(%closure-ref c+1 -1) −→ 3
(%closure-ref c+1 0) −→ 5
(%closure-ref c+1 1) −→ 7

•	 Chloe emphasizes that all SCHEME constructs other than lambdas within a funrec will be compiled as
before. In particular the code generated for a call of a procedure defined via funrec is the same as that
for any other call. In other words, the caller’s half of the calling convention is unchanged. However, the
code generated for lambdas within a funrec needs to be different than that generated for non-funrec
lambdas.

• Chloe suggests you use the following composition of compiler phases to test your design:

(define ->closures/no-cps
(cascade	 initialize

desugar
globals/wrap
assignment-convert
closurize
abbreviate
pp))

This includes the desugaring, globalizing, assignment conversion, and closure conversion phases, as
well as some extra phases (initialize, abbreviate, and pp) that make the output easier to read.
The cascade function composes the phases so that they are performed in a left to right order. The
set of phases does not include CPS conversion so that the output is easier to read. (Of course, the
compilation process should still work if the CPS phase is inserted.)

After going on for what seems like forever, Chloe finally leaves and you set about your task:

a.	 Implement the closurize-funrec procedure. Be sure to provide an English explanation of your de-
sign and a few test cases including the even?/odd? example.

For this part of the question, you should ignore any garbage collection issues that arise.

Here are some questions to keep in mind:

6

•	 For the TORTOISE representation shown in figure 1, how does the code for the body of the odd?
procedure access the values of the variables named even? and =?

•	 For Chloe’s merged structure in figure 2, how does the code for the body of the odd? procedure
access the values of the variables named even? and =?

b.	 Chloe’s representation for mutually recursive procedures can indeed save time and space. However,
it introduces a few prickly problems:

(i) The procedure? predicate no longer works. Explain why, and describe how to fix it.

(ii)	 Garbage collection will no longer work properly given Chloe’s representation. Explain why, and
describe how to modify the garbage collector for TORTOISE to fix the problem.

7

(define (closurize node)
(cond ((application-node? node) (closurize-application node))

((lambda-node? node) (closurize-lambda node))
((funrec-node? node) (closurize-funrec node))
(else (subnode-map closurize node))))

(define (closurize-application node)
(apply	 make-ccall

(closurize (call-rator node))
(map closurize (call-rands node))))

(define (closurize-lambda node)
(let ((formals (lambda-formals node))

(body (lambda-body node))
(frees (free-vars node))
(closure-var (make-var (fresh-name ’closure))))

‘(PRIMOP	 CLOSURE
(LAMBDA (,closure-var ,@formals)

,(rewrite	 (list->set frees)
;; Ref-rewriting procedure
(lambda (var)

(make-primop ’closure-ref
(list	 closure-var

;; Need 1+ to
(1+ (position

;; SET!-rewriting procedure
(lambda (var body)

(make-primop ’closure-set!
(list	 closure-var

;; Need 1+ to
(1+ (position
body)))

(closurize body)))
,@frees)))

pass over code
var frees)))))

pass over code
var frees))

Figure 3: The contents of Chloe’s file closurize.scm.

8

