
6.821 Programming Languages Handout
Fall 2002 October 24

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Compvter Science

2002 Midterm Solutions

Problem 1: Short Answer [18 points]

Evaluate the following expressions in the given models. If the expression evaluates to an error, say what
kind of error it is.

�����������
	���
�

�����������������������������
��
�����	���
�
�
�

�����������
	��
�

���!��
�
�
�

a. [2 points] static scoping, call by value

Solution: 2

b. [2 points] dynamic scoping, call by value

Solution: 3

�����������������������������"
���
�

�
#����������������"
$���%
�
�
�

�����������������������������"
&�
�
�

�
#�
�
�

c. [2 points] static scoping, call by value

Solution: error,
�

is not bound

d. [2 points] dynamic scoping, call by name

Solution: 2

�����������
	('
�

�����������������������������
��
���)&��	�
�
�
�

�����������
	$��
�

�+*����-,.�����������������
��
���)&��	�
�
�
�

�����������
	��
�

���/	�
�
�
�

e. [2 points] static scoping, call by value

Solution: 2

f. [2 points] dynamic scoping, call by value

Solution: 1

�����������
	���) � '
�

�
�('
�

����������� � � � ��#���� �+*����-, � �����$��
�
��
�
�

�����������������
	�
��
	 �
	�	�
�
�

���������������
	�
���� � � � ��
�
�
�
�

g. [2 points] static scoping, call by name

Solution: 13

h. [2 points] static scoping, call by value

Solution: error, divide by 0

i. [2 points] static scoping, call by need

Solution: 12

2

Problem 2: Operational Semantics: [18 points]

Ben Bitdiddle’s company, which sells commercial PostFix implementations, has been hard-hit by the In-
ternet stock bust and has sent him off to MIT to bring back new commercializable technology. Ben Bitdiddle
has been learning about functional programming, and while he still prefers PostFix, he is intrigued by the
notion of currying. He proposes two new PostFix constructs that permit creating and taking apart PostFix
procedures. The constructs are called � ����� and � � � ����� .
� � ����� expects the first value on the stack to be a number � , and it expects there to be at least � more

values on the stack. It packages together the next � values on the stack, �
	���
�
�
����
� , as a command
sequence �������
��
�
�
���	�� and pushes � on the stack.

� � � � ����� expects the first value on the stack to be a command sequence ����������
�
�
���	�� . It pushes
�
����
�
�
�����	���� on the stack in that order.

If the preconditions are not met, the operational semantics gets stuck.
� � � ����� permits the PostFix stack to contain commands, which was previously impossible. For example,

consider the following PostFix program:
��� �!� "#� � � �����������%
 ��	�����
%$&� �(' � " ' � �

We can think of
� �����������%

as a procedure of three arguments that adds
� � , � " , and

� �
. Using � � � �����

and � ����� , we can write a currying procedure that takes a three-argument procedure,
� � , and

� "
, and

outputs a procedure that takes one argument
�)�

and outputs
� �%' � " ' � � . The currying procedure is� � � � ������������� � ������
 and it works as follows:

��� "!� � � �����������%
!� � � � ������������� � ������
 ��	�����
%$
(
� "*� � add add)

Ben’s company has built proprietary optimization technology that can convert this command sequence to���,+ �����%

, where

�,+ � � �-' � " . Together, these two innovations promise a remarkable improvement in
PostFix efficiency.

a. [5 points] Give a rewrite rule for � � � ����� .
Solution:

. � � � �����0/ Q � �
V � V

"1/2/2/
V 	
3/ S 4 $.

Q ��� / V 	 /2/2/ V � / S 4 [unpack]

b. [5 points] Give a rewrite rule for � ����� .
Solution:

. � �����0/ Q �5� / V 	 /2/2/ V � / S 4 $.
Q � �

V � V
"1/2/2/

V 	
3/ S 4 [pack]

c. [8 points] In addition to performing partial evaluation, Ben would like to be able to reuse its results;
after all, procedures that can only be called once are of limited use. Ben proposes to add a restricted
form of

� �2� to PostFix ',6�� � � ����� �7� ������8 ; the restricted
� �2� may only be used immediately after � ����� .

Do all such programs terminate? Argue briefly: give either an energy function or a counterexample.

Solution: PostFix ',6�� � � ����� �7� ����� � � �2�29;:=<?>�9;@ AB>�:=C 8 programs may not terminate. Recall that the canonical
non-terminating PostFix ' � �2� program is

��� �2� ��	�����
 � �2� ��	����
. Notice that � � � ����� and � ����� are

duals. The following program does not terminate.
� � � � ����� � ������� �2� ��	�����
 � � � ����� � ������� �2� ��	����

One can also write unrestricted
� �2� in terms of restricted

� �2� :
� �2�0� � � ������� �2�D� � � ����� �FEG� *�H � �I� � � ����� �FEG�

3

Problem 3: Denotational Semantics: [34 points]

Ben Bitdiddle enjoys the convenience of short-circuiting operators and has a proposal for making them
even more powerful.

A standard short-circuiting logical operator evaluates only as many of its operands as necessary; it
evaluates its arguments in left-to-right order, stopping as soon as it evaluates an argument that determines
the value of the entire expression. For instance, if

� ���
is a short-circuiting operator, then the following

program evaluates to � � without raising an error:
� � ��� � �����('���) � '
�
�

However, reversing the order of the expressions leads to an error:
� � ��� ���('���) � '
�
 � �%

Ben Bitdiddle reasons that the second expression, too, should evaluate to � � . After all, one of the
operands evaluates to � � , and that determines the value of the entire expression. He proposes a very-short-
circuiting operator

������� ���
(non-deterministic and) such that if either operand evaluates to false, then only

that operand is evaluated; otherwise, both operands are evaluated. His goals are:
� The expression errs or infinite-loops only if at least one of the operands does, and the other expression

does not evaluate to � � . (Hint: infinite loops, errors, and concurrency are not the main point of this
problem.)

� The value of the entire expression is the
� ���

of all the visibly evaluated operands, where a visibly
executed operand is one whose side effects have been performed on the resulting store.

� The entire expression evaluates to � � if and only if both operands are visibly evaluated (because both
operands must be evaluated to achieve that result).

� The entire expression evaluates to � � if and only if exactly one expression is visibly evaluated.

Alyssa P. Hacker does not believe Ben’s goals are achievable. She says she can satisfy the first two goals
plus either of the last two goals, but not all four goals simultaneously.

a. [6 points] Informally describe the operational semantics for one of the possibilities for
������� ���

that
satisfies Alyssa’s claim.

Solution: There are multiple solutions to this problem. Here is one of them.

Let ��� be the initial store.

Evaluate � � in ��� , giving
.
	 ������4 . If

	
is false, return

.
	 ���G��4 .
Otherwise, evaluate � " in ��� , giving

.
	 ��� " 4 . If
	

is false, return
.
	 ��� " 4 .

Otherwise, evaluate � " in ��� , giving
.
	 ��� � 4 . Return

.
	 ��� � 4 .
(This might be false, even though both operands have been evaluated.)

b. [8 points] What is ��

 � ������� ��� � ��� " ��� � for the version of
������� ���

that you described above?

Solution:

��

 � ������� ��� E � E
"
 � �

�����������%
���

E ��� � e (�����
 if �����
then (� false)
else ��

E " � � e (��� "
 if ��� "

then (� false)
else ��

E ��� � e k)

s �)
s �

4

Alternately, with explicit stores:

��

 � ������� ��� E � E
"
 � �

����� �����
���

E ��� � e (����� ���
 if �����
then (� false ���)
else ��

E " � � e (��� " � "
 if ��� "

then (� false � ")
else ��

E ��� � e k s

"
)

s �)
s �

c. [4 points] Can
����� E � (nondeterministic or) be defined in terms of

������� ���
? Explain briefly.

Solution: Yes.
� :����

 � ����� E � � � � "
 � � � � � E ��� ������� ��� � � E � � �
$� � E � � "
�
�

Because
� E � preserves nontermination and errors, the semantics are as desired: if either �,� or � "

evaluates to true, the other is not evaluated.

d. [3 points] What does the following FLAVAR! program evaluate to?
����������� ���
�

����������� � ����� � ��* � � �$� ������� ��� ���(���

� � ��#������+*����-, ���
 � ��
�
�
�
��� ��* ��� ����� � ��* � � ���
�
�

Solution: � � evaluates to false, and � " evaluates to true. The entire expression evaluates to
� � ���

.

e. [3 points] What does the following FLAVAR! program evaluate to?
����������� ���
�

����������� � ����� � ��* � � �$� ������� ��� ���(���

� � ��#������+*����-, ���
 � ��
�
�
�
��� ��* ��� ����� � ��* � � ���
�
�

Solution: � � in isolation evaluates to true, and � " evaluates to true. The entire expression evaluates
to either

� � �	�
 or
� � �
�
 , depending on the order of evaluation.

f. [6 points] Demonstrate that Alyssa’s assertion is correct. Given your semantics for
������� ���

, write an
������� ���

expression that fails one of the last two constraints. The expression should either definitely
evaluate to � � , but with the side effects of just one of its arguments; or it should definitely evaluate to
� � , but with the side effects of both arguments.

Solution: This expression evaluates to false, but evaluates both arguments:
����������� � � ��
�� � � ��
�
� ������� ����� � ��#���� �+*����-, � � �%
&�

� � ��#���� �+*����-, � � �%
 �
�
�

g. [4 points] Suggest a restriction (to FLAVAR!, FLK!, or
������� ���

) that achieves all of Ben’s goals.

Solution: Disallow uses of
*����-,

.

5

Problem 4: Control [30 points]

After hearing that Ben Bitdiddle’s MIT experience led him to experiment with currying (Problem 2), the
president of Ben’s company exclaimed, “I won’t be caught selling buggy whips, curry combs, or other
horse products in the modern economy!” and sent Ben off to New Jersey to learn some more practical
programming constructs.

Ben noted that FLK! is missing the while loop, which is standard in other languages, and reasons that
adding it will reduce programmers’ resistance to FLK!.

Ben proposes three new constructs —
H�� �����

,
� E ������� � � , and

� � ��� � — to ensure that C programmers feel
at home programming in FLAVAR!. The command

�7H�� ����� � A�����C ��� � C	� ��
 �
���
 behaves as follows. If � A�����C
is true, then evaluate ��� � C	� and loop back to re-evaluate the entire

H�� �����
form (starting with � A�����C again).

If � A�����C is false, then the value of the entire
H�� �����

expression is the result of evaluating ��
 �
��� .
Within ��� � C	� , ��� E ������� � �
 preempts execution of the smallest enclosing ��� � C	� and returns to the top of

that loop.
Finally,

� � � ��� � � �
 forces the entire
H�� �����

expression to terminate with the value � � (without evaluat-
ing ��
 �
���).

Consider the following procedure:
������� ��� � �
�������������$�
	�������

�����������
	���������� 	�������
�
�

�7H�� ������� � ��#�������������� ��*����-, 	 ������������� � � ��� 	�
���
�
���� ��������� � � ��� 	�
&'
�

� � ��#�������������� ��*����-, 	 ������������� � � ��� 	�
���
�

� � ����� ��������� � � ��� 	�
&'

��� E ������� � �
� � � ��� �����
�
�

� � ��������� � � ��� , 	�
���
�
�
�
�

Evaluation proceeds as follows:
��� �%��'
%$����
��� �%����
%$ �%�

In order to provide a meaning for the new commands, we must change the meaning function � and add
a new domain:

��� Exp � Environment � Expcont � ContCont � BreakCont � Cmdcont
c � ContCont � Expcont
b � BreakCont � Expcont

a. [10 points] What is ��

 �7H�� ����� � A�����C ��� � C	� ��
 �
���
 � � ?

Solution: Here is a version that re-evaluates the condition after
��� E ������� � �
 , and where

� � � ��� ��
 or��� E ������� � �
 in � A�����C break out of the
H�� �����

form to which � A�����C belongs:

��

 �7H�� ����� � A�����C ��� � C	� ��
 �
���
 � �
����� �����
 fixCmdcont ����
���

 � A�����C � � e (���%
 if v

then ��

 ��� � C	� � � e (� 	
 �) (� 	
 �) k
else ��

 ��
 �
��� � � e k c b)

(� 	
��) k

Here is a version that does not re-evaluate the condition after
��� E ������� � �
 , and where

� � � ��� ��
 or��� E ������� � �
 in � A�����C break out of a
H�� �����

form that encloses the one to which � A�����C belongs:

6

��

 �7H�� ����� � A�����C ��� � C	� ��
 �
���
 � �
����� �����
 fixCmdcont ����
���

 � A�����C � � e (���%
 if v

then fixCmdcont (���3
���

 ��� � C	� � � e (� 	
 �) (� 	
��) k)
else ��

 ��
 �
��� � � e k c b)

c b

b. [10 points] What is ��

 ��� E ������� � �
 � � ?
Solution: ��

 ��� E ������� � �
 � �,����� �����%
 (� � � ���)

c. [10 points] What is ��

 � � � ��� � �
 � � ?

Solution: ��

 � � � ��� � �
 � �,����� �����%
���

 � � � e b c b

7

